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Problem description
In a paper from 1984, the physicist Reinhard Werner studied what he called quantum
harmonic analysis on phase space. Werner was able to extend several results from
classical harmonic analysis of functions to results on bounded operators on Hilbert
spaces. As his main tools, Werner defined convolutions between operators and
functions along with a corresponding Fourier transform of operators.

Today this theory has been expanded and to some degree applied, but mainly
in mathematical physics. The original aim of this thesis was therefore to collect
and formulate Werner’s theory in a precise mathematical form, that would be
accessible to mathematicians with no background in physics. In addition to this
my supervisor Franz Luef expected that we would discover applications of Werner’s
theory to time-frequency analysis while preparing the thesis, and that results from
other parts of mathematics could be used to shed light on Werner’s theory. The
aims of this thesis may therefore be summed up as follows:

• Give a precise exposition of Werner’s theory of quantum harmonic analysis.

• Investigate possible applications of Werner’s theory to time-frequency analysis.

• Apply results from other areas of mathematics to illuminate and improve
Werner’s results.
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Abstract
The theory of quantum harmonic analysis on phase space introduced by Werner is
presented and formulated precisely using the terminology of time-frequency analysis
and abstract harmonic analysis. Convolutions of functions with operators and
of operators with operators are introduced, along with a corresponding Fourier
transform of operators – the Fourier-Wigner transform. Using these concepts
we formulate and prove a version of Wiener’s Tauberian theorem for operators
due to Werner. The main novel result of the thesis is a formulation of the so-
called localization operators using the convolution of a function with an operator,
which gives a conceptual framework for localization operators and an extension of
results by Bayer and Gröchenig. The connection to quantum harmonic analysis
provides new perspectives on results in time-frequency analysis. In particular, Lieb’s
uncertainty principle is seen to be a special case of a Hausdorff-Young inequality for
operators, which in turn leads to an improvement of this Hausdorff-Young inequality.
We also show a generalization of the Berezin-Lieb inequalities, and relate this and
the convolutions to results by Klauder and Skagerstam. The theory of Banach
modules is used to prove new results on the convolutions, and the Fourier-Wigner
transform is shown to be related to the so-called Arveson spectrum. Finally the
convolutions are considered in the context of modulation spaces, inspired by the
existing literature on localization operators and modulation spaces.

Sammendrag
Teorien om kvante-harmonisk analyse på faserommet som introdusert av Werner
blir presentert og presist formulert i terminologi fra tid-frekvensanalyse og abstrakt
harmonisk analyse. Vi introduserer konvolusjonen av en funksjon med en operator
og konvolusjonen av to operatorer, samt en tilhørende Fouriertransformasjon for
operatorer. Ved hjelp av disse konseptene viser vi en versjon Wieners Tauberske
teorem for operatorer, som først ble vist av Werner. Det fremste nye resultatet i
oppgaven er at såkalte lokaliseringsoperatorer formuleres som en konvolusjon av en
funksjon med en operator, noe som gir lokaliseringsoperatorer et konseptuelt ram-
meverk og fører til en forbedring av resultater av Bayer og Gröchenig. Koblingen
til kvante-harmonisk analyse fører til nye perspektiver på kjente resultater i tid-
frekvensanalyse. Spesielt viser vi at Lieb’s uskarphetsrelasjon er et spesialtilfelle av
en Hausdorff-Young-ulikhet for operatorer, noe som også fører til en forbedring av
denne Hausdorff-Young-ulikheten. Vi viser også en generalisering av Berezin-Lieb-
ulikhetene, og knytter denne samt konvolusjonene til teorier utviklet av Klauder og
Skagerstam. Videre benyttes teorien om Banachmoduler til å vise nye resultater for
konvolusjonene, og at Fourier-Wigner-transformasjonen kan knyttes til det såkalte
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Arvesonspektret. Til slutt vises noen resultater om konvolusjonene og moduler-
ingsrom, inspirert av den eksisterende litteraturen om lokaliseringsoperatorer og
moduleringsrom.
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1 Introduction
In a paper from 1984, the physicist Reinhard Werner introduced the study of what
he called quantum harmonic analysis on phase space [46]. His goal was to construct
a theory of harmonic analysis that included both classical mechanics, which deals
with functions on R2d, and quantum mechanics, which deals with operators on
the Hilbert space L2(Rd). In classical harmonic analysis, the convolution of two
functions is a key ingredient. A crucial part in Werner’s theory is therefore the
definition of a convolution of an operator S with a function f , f ∗ S, and a
convolution of two operators S and T , S ∗ T .

A second key ingredient in classical harmonic analysis is the Fourier transform
F of functions, and in order to include operators in harmonic analysis Werner
defined a Fourier transform FW of operators. This Fourier transform was defined
such that the convolutions and Fourier transforms interacted in the expected way;
for instance FW (f ∗ S) = F(f)FW (S). Equipped with these two concepts, Werner
extended theorems in classical harmonic analysis to operators; in particular he
obtained an operator-version of Wiener’s celebrated Tauberian theorem [29,46, 48].

Since Werner’s theories seem to have received little attention outside of math-
ematical physics, the first goal for this thesis is to explain Werner’s theory in
a coherent and precise way suitable for mathematicians with no background in
physics. We will formulate the theory using the terminology of abstract harmonic
analysis and time-frequency analysis, providing detailed proofs and some novel
results along the way.

We will also consider the localization operators, first discussed in the works of
Berezin [6] as a quantization rule, and later introduced into the context of time-
frequency analysis by Daubechies [14]. Given two functions ϕ1, ϕ2 on Rd, called
windows, and a function f on R2d, one obtains a localization operator Aϕ1,ϕ2

f on
L2(Rd). Our second goal is to show the novel result that the localization operators
can be described as a special case of Werner’s theory of convolutions. As we aim to
show, this provides localization operators with a conceptual framework, and some of
Werner’s general results immediately strengthen the known results for localization
operators. Our main example is the question asked by Bayer and Gröchenig in
a paper from 2014 [3]: what conditions must be imposed on the windows ϕ1, ϕ2

to guarantee that the set {Aϕ1,ϕ2

f : f ∈ L1(R2d)} is dense in different spaces of
operators? We will see that in some cases this question is answered by Werner’s
generalization of Wiener’s Tauberian theorem, and in particular we will be able to
improve some of Bayer and Gröchenig’s results from implications to equivalences
in theorem 7.5.

The third and final goal of the thesis is to show how different mathematical
concepts and techniques can be used to shed light on Werner’s theories. For
instance, localization operators have been studied in the framework of the so-called
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modulation spaces of functions [3], and since the localization operators are special
cases of convolutions, we will try to study Werner’s convolutions using modulation
spaces. Many of Werner’s results will be shown to be generalizations of familiar
theorems in time-frequency analysis. For instance, the Hausdorff-Young inequality
for the Fourier transform of operators includes Lieb’s uncertainty principle [23] as
a special case, and we will use this connection to improve this Hausdorff-Young
inequality. We will also show how Werner’s extended Fourier transform is related to
the concept of spectrum defined by Arveson [1]. Furthermore, we will see that parts
of Werner’s theory can be thought of as the construction of Banach modules [22],
and the celebrated Cohen-Hewitt theorem is then used to prove new results in
Werner’s theory.

In addition to this, a preprint is being prepared that relates the convolutions of
Werner to the phase space representations due to Klauder and Skagerstam [31,32].
This connection is included in appendix B, where we in particular prove a generalized
Berezin-Lieb inequality.

At the time of completion of this thesis, a preprint with the same title has been
written by Franz Luef and the author [35]. The preprint is based on the thesis,
and in particular aims to introduce the convolutions as a conceptual framework for
localization operators, as is done in sections 5 and 7.1. The preprint also includes
the connections to Banach modules in section 7.2 and the Arveson spectrum in
section 6.2.

The thesis is structured as follows. Section 2 introduces the necessary back-
ground material, including a thorough introduction to the theory of vector-valued
integration. Thereafter, sections 3 and 4 introduce Werner’s convolutions, and the
relation between these convolutions and localization operators is made explicit in
section 5. Section 6 then introduces and discusses Werner’s Fourier transform for
operators, and Werner’s generalization of Wiener’s Tauberian theorem is discussed
and proved in section 7, including its consequences for localization operators and
some applications of the theory of Banach modules. The convolution on modula-
tion spaces and corresponding classes of operators is then discussed in section 8.
Finally some connections to quantum mechanics are explored in two appendices.
The first considers Werner’s motivation from quantum mechanics for studying his
convolutions. The second shows that Werner’s convolutions provide a conceptual
framework for the phase space representations of Klauder and Skagerstam.
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2 Prerequisites

2.1 Notation and conventions

Before we turn our attention to the necessary background material, we will fix some
notation and conventions. Much of the time we will work with functions on phase
space, i.e. R2d, and whenever this notation is used we will tacitly assume that
d ∈ N. Furthermore, we will use Latin letters such as f and g to denote functions
on phase space R2d, and Greek letters such as ψ and φ to denote functions on Rd.
Elements of R2d will often be written in the form z = (x, ω) for x, ω ∈ Rd.

A recurrent theme will be duality and the action of bounded linear functionals
on a Banach space. If X is a Banach space we will denote its dual space by X∗,
and for x ∈ X and x∗ ∈ X∗ we write 〈x∗, x〉 to denote x∗(x). In order to agree
with inner product notation, we will always take the duality bracket 〈·, ·〉 to be
antilinear in the second argument. We are therefore strictly speaking considering
antilinear functionals, but the antilinear functionals are exactly the pointwise
complex conjugates of the linear functionals, so this is of little consequence.

If ψ and φ are functions on Rd, then we write ψ ⊗ φ for the function on R2d

defined by ψ⊗φ(x, ω) = ψ(x)φ(ω). Similarly, for two elements ξ, η in some Hilbert
space H, we define the operator ξ⊗ η on H by ξ⊗ η(ζ) = 〈ζ, η〉ξ, where ζ ∈ H and
〈·, ·〉 is the inner product on H. In most cases H will in fact consist of functions,
so that ξ ⊗ η may be interpreted either as a new function or as an operator, but
the correct interpretation will always be clear from the context.

The class of Schwartz functions on Rd will be denoted by S(Rd), and the space
of tempered distributions by S ′(Rd).

Finally we will need to fix some notation for operations on functions.

Definition 2.1. Let ψ : Rd → C be a function. We define the functions ψ∗ and ψ̌
on Rd as well as the parity operator P by

ψ∗(t) = ψ(t)

ψ̌(t) = Pψ(t) = ψ(−t).

We will sometimes refer to ψ̌ as the reflection of ψ.

2.2 Positive operators and polar decomposition

Let H be a Hilbert space. We say that a bounded operator A : H → H is positive
if 〈Aξ, ξ〉 ≥ 0 for any ξ ∈ H, where 〈·, ·〉 is the inner product on H. To introduce
the classes of operators that we will work with, we need the following result [36, Ch.
2.2].
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Proposition 2.1. Let A be a positive operator on H. There exists a unique positive
operator

√
A on H such that

√
A
√
A = A. Furthermore, for any operator B the

operator B∗B is positive, and we write
√
B∗B = |B|.

The relation between an operator A and |A| is given by the so-called polar
decomposition . Recall that a bounded operator U on H is a partial isometry if
U
∣∣
kerU⊥

is an isometry.

Proposition 2.2. Let A : H → H be a bounded operator. Then there exists a
unique partial isometry U such that A = U |A|.

2.3 Schatten p-classes of operators

Many of our results will deal with quantization procedures, which mathematically
speaking are procedures for assigning an operator Af on a Hilbert space H to a
function f on R2d. A recurrent question will be whether functions from a given
function space give bounded operators with some specified properties. We will
therefore need to discuss different classes of operators, and will restrict ourselves to
bounded operators on the Hilbert space L2(Rd), denoted by B(L2(Rd)).

All of the classes of operators that we will discuss, except for B(L2(Rd)) itself,
will be subspaces of the compact operators K(L2(R)), i.e. operators that are the
limit in the operator norm of operators with finite-dimensional range. Operators
with finite-dimensional range are frequently referred to as finite rank operators.
To introduce the classes that we will study, we need the following theorem, which
introduces the so-called singular value decomposition of a compact operator. A
proof may be found in most texts on functional analysis, for instance [12,40,42].

Theorem 2.3. Let T be a compact operator on L2(Rd). There exist two orthonor-
mal sets {ψn}n∈N and {φn}n∈N in L2(Rd) and a sequence {sn(T )}n∈N of positive
numbers such that sn(T )→ 0, and T may be expressed as

T =
∑
n∈N

sn(T )ψn ⊗ φn,

where the convergence of the sum is in the strong topology on B(L2(Rd)).
The numbers {sn(T )}n∈N are called the singular values of T , and are the eigen-

values of the operator |T |. Thus they are in particular uniquely determined.

Convergence in the strong topology means that the sum
∑
n∈N

sn(T )〈ξ, φn〉ψn

converges to Tξ in the norm of L2(Rd) for any fixed ξ ∈ L2(Rd).
The singular values associate a sequence of positive numbers to any compact

operator. This sequence will now be used to introduce the Schatten classes of
operators.
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Definition 2.2. Let 1 ≤ p <∞. The Schatten p-class of operators on L2(Rd) is
the set T p of compact operators given by

T p = {T : (sn(T ))n∈N ∈ `p}

Furthermore, we let T ∞ denote B(L2(Rd)).

Remark. 1. If T is a compact operator, the sequence of singular values of T
converge to zero, so we may consider the supremum supn∈N |sn(T )|. It is not
difficult to show by direct calculation that this supremum is the operator
norm ‖T‖B(L2).

2. The notation T ∞ = B(L2(Rd)) is convenient when dealing with complex
interpolation (see section 2.10, but the reader should note that other sources
such as [3] use T ∞ to denote the compact operators on L2(Rd).

The next theorem uses the singular value decomposition to introduce a norm
on the Schatten p-classes, and asserts that they are Banach spaces under this norm.
A proof may be found in [43, Thm. 2.7].

Theorem 2.4. Let 1 ≤ p <∞ and T ∈ T 1. The expression ‖T‖T p =

(∑
n∈N

sn(T )p
)1/p

defines a norm on T p, and this norm makes T p a Banach space under pointwise ad-
dition and scalar multiplication. Furthermore, the spaces T p are ideals in B(L2(Rd)),
meaning that A ∈ B(L2(Rd)) and T ∈ T p implies that AT, TA ∈ T p.

Since the norms have been introduced as the usual `p-norms of sequences, well
known results carry over from the theory of `p-spaces. For instance, 1 ≤ p ≤ q <∞
implies that T p ⊂ T q and ‖·‖B(L2) ≤ ‖·‖T q ≤ ‖·‖T p ≤ ‖·‖T 1 . If an operator lies in
T p for p <∞, the singular value decomposition will converge in the ‖ · ‖T p-norms,
and as a consequence the finite rank operators are dense in T p for p < ∞. It
follows trivially that T p is a dense subspace of T q in the norm ‖ · ‖q whenever
1 ≤ p ≤ q <∞.

2.3.1 The trace and trace class operators

We will be especially interested in the class T 1. This space can also be described
as the space of trace class operators. The concept of the trace of a matrix may
be extended to a general operator T on L2(Rd) by picking an orthonormal basis
{en}n∈N of L2(Rd) and defining tr(T ) =

∑
n∈N
〈Ten, en〉. The sum in the definition of

tr(T ) will not converge for an arbitrary compact operator T , and one therefore
defines the trace class operators to be those operators T where tr(|T |) <∞.
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To see that the set of trace class operators coincides with T 1, write |T | as
|T | =

∑
n∈N

sn(T )ψn ⊗ ψn, where {ψn}n∈N is an orthonormal basis of eigenvectors

of |T |. This is possible by the spectral decomposition of compact operators,
see [9, Thm. 7.30]. Calculating tr(|T |) using the orthonormal basis {ψn}n∈N one
then finds that tr(|T |) =

∑
n∈N

sn(T ), hence tr(|T |) < ∞ if and only if T ∈ T 1. In

particular we see that ‖T‖T 1 = tr(|T |).
The next proposition, mainly from VI.18 and VI.25 in [40], collects the different

properties of the trace that we are going to need later.

Proposition 2.5. Let S, T ∈ T 1, A ∈ B(L2(Rd)) and λ ∈ C. The trace of S,
given by tr(S) =

∑
n∈N
〈Sen, en〉 for some orthonormal basis {en}n∈N, is independent

of the orthonormal basis used to calculate it. Furthermore,

1. tr(λS + T ) = λtr(S) + tr(T ).

2. S∗ ∈ T 1, and tr(S∗) = tr(S).

3. tr(AS) = tr(SA).

4.
∑
n∈N
|〈ASen, en〉| ≤ ‖A‖B(L2)‖S‖T 1.

5. |tr(AS)| ≤ ‖A‖B(L2)‖S‖T 1.

Remark. By the triangle inequality, part (4) of the previous proposition is stronger
than part (5). Most sources do not require part (4), and therefore only include
part (5) as a proposition. However, the standard way of proving part (5) is to first
prove part (4). Such a proof may be found in theorem 18.11 (e) in [12].

Having established that the trace is linear, we are ready to state a version of
Hölder’s inequality and the duality relations of the Schatten p-classes, proved in
theorem 2.8 and 3.2 in [43].

Theorem 2.6. Let 1 ≤ p <∞, and let q be the number determined by 1
p

+ 1
q

= 1.

1. If S ∈ T p and T ∈ T q, ST ∈ T 1 and ‖ST‖T 1 ≤ ‖S‖T p‖T‖T q .

2. The dual space of T p is T q, and the duality may be given by

〈T, S〉 = tr(TS∗)

for S ∈ T p and T ∈ T q.

Furthermore, the dual space of K(L2(Rd)) is T 1 under the same duality action.
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2.3.2 Hilbert-Schmidt Operators

The space T 2 is the space of Hilbert-Schmidt operators on L2(Rd). The Hilbert-
Schmidt operators contain the trace class operators as a subspace, and in fact
an operator is trace class if and only if it is the product of two Hilbert-Schmidt
operators. Using this fact we may define an inner product on the Hilbert-Schmidt
operators by

〈S, T 〉T 2 = tr(ST ∗),

for S, T ∈ T 2, and this inner product makes T 2 a Hilbert space [40, Thm. VI.22].

2.4 Vector-valued integration

The theory of integration of functions from some measure space to a Banach space
may be approached in different ways. The two main approaches consist roughly
of either building the theory from first principles similarly to the construction
of the Lebesgue integral, or to exploit the fact that we already know how to
integrate functions with values in the complex numbers. The first approach leads
to the Bochner integral, and the second to what is often referred to as a weak
definition of the integral. We will use the second approach as discussed by Folland
in [21], restricting the discussion to the measure space Rd. The connection between
vector-valued functions and complex valued functions is provided by bounded linear
functionals, and we give the following definition:

Definition 2.3. Let X be a Banach space and Ψ : Rd → X a function. We
say that Ψ is integrable if x∗ ◦ Ψ : Rd → C is integrable for any bounded linear
functional x∗ on X.

What we would like to call the integral
∫
Rd Ψ dµ of Ψ, where µ is Lebesgue

measure, would be a vector v ∈ X such that x∗(v) =
∫
Rd x

∗ ◦Ψ dµ for any bounded
linear functional x∗ on X. If we think of the integral as a limit of sums, this would
just be a generalization of the statement that x∗ is linear. The existence of such
a vector v is not immediately clear, and one would certainly expect that Ψ must
satisfy some conditions in order for v to exist. We will confine ourselves with a
sufficient condition for the integral to exist [21, Thm. A.22].

Theorem 2.7. Let X be a Banach space, µ Lebesgue measure on Rd, φ : Rd → C
a function in L1(Rd) and Ψ : Rd → X a bounded and continuous function. In this
case the integral

∫
Rd φ · Ψ dµ exists in the sense discussed above, belongs to the

closed linear span of the range of Ψ and satisfies the norm estimate

‖
∫
Rd
φ ·Ψ dµ‖X ≤ ‖φ‖L1(Rd) sup

x∈Rd
‖Ψ(x)‖X .
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By definition the weak integral commutes with bounded linear functionals. In
fact, it is not difficult to show that it commutes with any bounded linear operator
between Banach spaces. We single out the precise statement in a proposition for
easy reference, since this property will be used later in the text.

Proposition 2.8. Let X, Y be Banach spaces, A : X → Y a bounded linear
operator and µ Lebesgue measure. If Ψ : Rd → X is an integrable function such
that the integral

∫
Rd Ψ dµ exists in X, then T ◦Ψ is an integrable function such that

the integral
∫
Rd T ◦Ψ dµ exists in Y . Furthermore,

∫
Rd T ◦Ψ dµ = T

(∫
Rd Ψ dµ

)
.

In this text we will mainly deal with with functions Ψ : Rd → X that are not
continuous, so that theorem 2.7 does not apply directly. The most common case
will be a bounded and strongly continuous function T : R2d → B(L2(Rd)), i.e. a
function T such that zn → z in R2d implies that T (zn)ξ → T (z)ξ for any fixed
ξ ∈ L2(Rd). Following [21] we will now show how we may use theorem 2.7 to define
the integral of T pointwise.

Let f ∈ L1(R2d), fix ξ ∈ L2(Rd) and let T : R2d → B(L2(Rd)) be a strongly con-
tinuous bounded function. Then theorem 2.7 gives that the integral

∫∫
R2d f(z)T (z)ξ dµ

exists in L2(Rd). Let IT be the operator on L2(Rd) defined by IT ξ =
∫∫

R2d f(z)T (z)ξ dµ.
Clearly ξ 7→ IT ξ is linear, and theorem 2.7 gives the norms estimate

‖IT ξ‖L2(Rd) ≤ ‖f‖L1 sup
z∈R2d

‖T (z)ξ‖L2 ≤ ‖ξ‖L2‖f‖L1 sup
z∈R2d

(
‖T (z)‖B(L2)

)
.

In other words, IT defines a bounded linear operator in B(L2(Rd)) with
norm ‖IT‖B(L2) ≤ ‖f‖L1 supz∈R2d

(
‖T (z)‖B(L2)

)
. We denote the operator IT by∫∫

R2d f(z)T (z) dz. Note that by the weak interpretation of the integral, IT is
defined by

〈
∫∫

R2d

f(z)T (z)ξ dµ, η〉 =

∫∫
R2d

f(z)〈T (z)ξ, η〉 dµ,

for η, ξ ∈ L2(Rd), where we have used the Riesz representation theorem to identify
the dual space of L2(Rd) with L2(Rd) itself. As a special case we note the following
proposition, which will be needed later.

Proposition 2.9. Let U : R2d → U(L2(Rd)) be a strongly continuous function, T
a trace class operator on L2(Rd), and f ∈ L1(R2d). Here U(L2(Rd)) denotes the
unitary operators. Define the operator IT by

IT =

∫∫
R2d

f(z)U(z)TU(z)∗ dz.

IT is trace class with ‖IT‖T 1 = ‖f‖L1‖T‖T 1, and if S ∈ B(L2(Rd)) then

tr(SIT ) =

∫∫
R2d

f(z)tr(SU(z)TU(z)∗) dz.

8



Proof. The strong continuity of z 7→ U(z)TU(z)∗ follows from the strong continuity
of U(z), so the integral defining IT exists by the preceding discussion.

We start by showing that IT is trace class with the given norm. A slightly
tedious but straightforward calculation using proposition 2.8 confirms that
|IT | =

∫∫
R2d |f(z)|U(z)|T |U(z)∗ dz – the calculation consists of checking that the

operator on the right is a positive square root of a I∗T IT . By picking an orthonormal
basis {en}n∈N for L2(Rd), the trace class norm tr(|IT |) is given by∑
n∈N

〈
∫∫

R2d

|f(z)|U(z)|T |U(z)∗ dz en, en〉 =
∑
n∈N

∫∫
R2d

|f(z)|〈U(z)|T |U(z)∗en, en〉 dz

=

∫∫
R2d

|f(z)|
∑
n∈N

〈|T |U(z)∗en, U(z)∗en〉 dz

= ‖T‖T 1‖f‖L1 .

We have used that {U(z)∗ψn}n∈N is another orthonormal basis since U(z) is unitary,
and the trace is independent of the basis used to calculate it. We have also used
Tonelli’s theorem to switch the order of the sum and integral, since the integrand
is positive.

In order to prove the last formula, let {en}n∈N be an orthonormal basis for
L2(Rd). By definition,

tr(SIT ) =
∑
n∈N

〈SIT en, en〉

=
∑
n∈N

∫∫
R2d

f(z)〈SU(z)TU(z)∗en, en〉 dz,

where we have used proposition 2.8 to move S inside the integral, and then moved
the inner product inside the integral by the weak definition of the integral. The
result would clearly follow if we could move the sum inside the integral, and we
therefore use Fubini’s theorem. This is permissible since∫∫

R2d

∑
n∈N

|f(z)〈SU(z)TU(z)∗en, en〉| dz ≤ ‖T‖T 1‖S‖B(L2)

∫∫
R2d

|f(z)| dz <∞

by part (4) of proposition 2.5. This concludes the proof.

2.5 Modulation spaces

The modulation spaces are a class of spaces of functions and distributions introduced
by Feichtinger in a series of papers starting with the introduction of the so-called
Feichtinger algebra in [17]. Since then, the modulation spaces have been found
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to have many properties that make them natural in the mathematical area of
time-frequency analysis, such as an analogue of the Schwartz kernel theorem and
invariance under time-frequency shifts [23]. The usefulness of these results is
strengthened by the fact that the modulation spaces are Banach spaces and enjoy
the natural duality relations. We start by defining the fundamental operators in
time-frequency analysis.

Definition 2.4. Let ψ be a function ψ : Rd → C, and let z = (x, ω) ∈ R2d. The
translation operator Tx, modulation operator Mω and time-frequency shifts π(z)
are defined by

(Txψ)(t) = ψ(t− x)

(Mωψ)(t) = e2πiω·tψ(t)

(π(z)ψ)(t) = (MωTxψ)(t) = e2πiω·tψ(t− x).

The translation and modulation operators may also be defined for ψ ∈ S ′(Rd) by

〈Txψ, φ〉 = 〈ψ, T−xφ〉
〈Mωψ, φ〉 = 〈ψ,M−ωφ〉

for φ ∈ S(Rd).

The translation and modulation operators satisfy an important commutation
relation, which can be proved by a straightforward calculation.

Lemma 2.10. Let z = (x, ω) ∈ R2d. Then MωTx = e2πix·ωTxMω.

Having defined the time-frequency shifts π(z), we now define the short-time
Fourier transform of two functions, which is a key part of the most common
definition of the modulation spaces.

Definition 2.5. Let ψ, φ ∈ L2(Rd). The short-time Fourier transform (STFT)
Vφψ of ψ with window φ is the function on R2d defined by

Vφψ(z) = 〈ψ, π(z)φ〉

for z ∈ R2d.
We further define the cross-ambiguity function A(ψ, φ) of ψ and φ by

A(ψ, φ)(z) = eπix·ωVφψ(z).

The STFT of two functions in L2(Rd) is well-defined, as one may easily check
that φ ∈ L2(Rd) implies that π(z)φ ∈ L2(Rd), and in fact ‖π(z)φ‖2 = ‖φ‖2.
However, we will need to define the STFT of a more general function ψ with a
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window φ. In this text, the window φ will generally be a fixed window in the
Schwartz space S(Rd). Therefore we may by duality define the STFT of any
tempered distribution ψ ∈ S ′(Rd) with φ, by defining that Vφψ(z) = 〈ψ, π(z)φ〉,
where the inner product notation denotes duality. Two of the most important
properties of the STFT are given in the following lemma, the proof of which may
be found in lemma 3.1.1 and 3.1.3 in [23].

Lemma 2.11. Let ψ, φ ∈ L2(Rd), and (x, ω) ∈ R2d.

1. Vφψ is uniformly continuous and vanishes at infinity.

2. For any (x′, ω′) ∈ R2d,

Vφ(π(x, ω)ψ)(x′, ω′) = e2πix·(ω′−ω)Vφψ(x′ − x, ω′ − ω).

We are now in a position to define the modulation spaces.

Definition 2.6. Fix a window φ ∈ S(Rd) \ {0}. For 1 ≤ p, q ≤ ∞, the modulation
space Mp,q(Rd) is the set of tempered distributions ψ such that

‖ψ‖Mp,q =

(∫
Rd

(∫
Rd
|Vφψ(x, ω)|p dx

)q/p
dω

)1/q

<∞.

In the special cases where p or q is ∞, the integral is replaced by an essential
supremum:

‖ψ‖M∞,q =

(∫
Rd

(
ess sup
x∈Rd

|Vφψ(x, ω)|
)q

dω

)1/q

‖ψ‖Mp,∞ = ess sup
ω∈Rd

(∫
Rd
|Vφψ(x, ω)|p dx

)1/p

.

Notation. When p = q, we will denote the space Mp,p(Rd) by Mp(Rd).

The main properties of the modulation spaces are now summarized without
proof in the following theorem. All of these results may be found in chapters 11.3
and 12.2 in [23].

Theorem 2.12. Let φ ∈ S(Rd) \ {0} be a window, and 1 ≤ p, q ≤ ∞.

1. The expressions ‖ψ‖Mp,q define norms on the modulation spaces Mp,q(Rd),
making the spaces into Banach spaces under pointwise addition and scalar
multiplication.

11



2. If φ′ ∈ S(Rd) \ {0}, we obtain the same spaces Mp,q(Rd) by using φ′ instead
of φ in definition 2.6. Furthermore, the two norms ‖ψ‖Mp,q given by using φ
or φ′ in definition 2.6 are equivalent.

3. If p1 ≤ p2 and q1 ≤ q2, then Mp1,q1(Rd) ⊂Mp2,q2(Rd).

4. If 1 ≤ p, q < ∞, then we have the dual space relation (Mp,q(Rd))∗ =
Mp′,q′(Rd), where p′, q′ are the conjugate exponents given by 1

p
+ 1
p′

= 1 = 1
q
+ 1
q′
.

The duality is given by

〈ψ, γ〉 =

∫∫
R2d

Vφψ(z)Vφγ(z) dz

for ψ ∈Mp,q(Rd) and γ ∈Mp′,q′(Rd).

The next lemma is sometimes known as Moyal’s identity [20, p. 57].

Lemma 2.13. If ψ1, ψ2, φ1, φ2 ∈ L2(Rd), then Vφiψj ∈ L2(R2d) for i, j ∈ {1, 2},
and the relation

〈Vφ1ψ1, Vφ2ψ2〉 = 〈ψ1, ψ2〉〈φ1, φ2〉

holds, where the leftmost inner product is in L2(R2d) and those on the right are in
L2(Rd).

2.5.1 Convolutions in modulation spaces

In section 8 we will need a result from Cordero and Gröchenig’s paper [13] regarding
the convolutions of elements of different modulation spaces. The following is a
simplified version of [13, Prop. 2.4] .

Proposition 2.14. Let 1 ≤ p, q, r, s, t ≤ ∞ such that 1
p

+ 1
q

= 1 + 1
r
and 1

t
+ 1

t′
= 1.

Mp,st(Rd) ∗M q,st′(Rd) ⊂M r,s(Rd),

with norm inequality ‖ψ ∗ γ‖Mr,s ≤ C‖ψ‖Mp,st‖γ‖Mq,st′ for some constant C.

The constant C will depend on the windows used to define the norms on the
different modulation spaces.

2.5.2 The Feichtinger algebra M1(Rd)

Of particular interest is the spaceM1(Rd), sometimes called the Feichtinger algebra.
As this name suggests, M1(Rd) has an algebra structure – in fact it is a Banach
algebra under both pointwise multiplication and convolution [23, Prop. 12.1.7].
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More precisely, if ψ, φ ∈M1(Rd), then ‖ψ · φ‖M1 ≤ ‖ψ‖M1‖φ‖M1 and ‖ψ ∗ φ‖M1 ≤
‖ψ‖M1‖φ‖M1 .

As Jakobsen shows in [27], the Feichtinger algebra is continuously embedded in
Lp(Rd) for 1 ≤ p ≤ ∞, and this embedding is dense for p 6=∞. On the other hand,
the Schwartz space is densely embedded in M1(Rd). By theorem 2.12 the dual of
M1(Rd) is M∞(Rd). This is a space of tempered distributions, much larger than
the function space L∞(Rd). In fact, Lp(Rd) is continuously embedded in M∞(Rd)
for every 1 ≤ p ≤ ∞ [27, Lem. 6.1].

The Feichtinger algebra is closed under many natural operations. We collect
the results we will need in the following lemma.

Lemma 2.15. Let ψ ∈M1(Rd) and z = (x, ω) ∈ R2d.

1. π(z)ψ ∈M1(Rd) with ‖π(z)ψ‖M1 = ‖ψ‖M1.

2. ψ̌ ∈ M1(Rd), and there is a constant K such that 1
K
‖ψ‖M1 ≤ ‖ψ̌‖M1 ≤

K‖ψ‖M1.

3. ψ∗ ∈ M1(Rd), and there is a constant C such that 1
C
‖ψ‖M1 ≤ ‖ψ∗‖M1 ≤

C‖ψ‖M1.

Proof. 1. Let z = (x, ω) ∈ R2d. The result follows from part 2 of lemma 2.11
and a change of variable.

‖π(z)ψ‖M1 =

∫∫
R2d

|Vφ(π(z)ψ)(x′, ω′)| dx′ dω′

=

∫∫
R2d

|Vφψ(x′ − x, ω′ − ω)| dx′ dω′ = ‖ψ‖M1 .

2. Using the change of variable t 7→ −t we find that

Vφψ̌(x, ω) =

∫
Rd
ψ(−t)e2πiω·tφ(t− x) dt

=

∫
Rd
ψ(t)e−2πiω·tφ(−t− x) dt

=

∫
Rd
ψ(t)e−2πiω·tφ̌(t+ x) dt = Vφ̌ψ(−x,−ω).

Thus ∫∫
R2d

|Vφψ̌(x′, ω′)| dx′ dω′ =
∫∫

R2d

|Vφ̌ψ(x′, ω′)| dx′ dω′.

In other words, the M1(Rd)-norm of ψ̌ measured with respect to the window
φ is the same as the M1(Rd)-norm of ψ measured with respect to φ̌. Since
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the Schwartz space is easily seen to be closed under reflection φ 7→ φ̌, φ̌ is also
a valid window. As different windows define equivalent norms on M1(Rd),
this means that there is some constant K such that

1

K
‖ψ‖M1 ≤ ‖ψ̌‖M1 ≤ K‖ψ‖M1 ,

where all norms are measured with respect to the window φ.

3. Similarly to the previous calculation, we calculate that

Vφψ
∗(x, ω) =

∫
Rd
ψ(t)e2πiω·tφ(t− x) dt

=

∫
Rd
ψ(t)e−2πiω·tφ∗(t− x) dt = Vφ∗ψ(x,−ω).

The proof may now be concluded as we did in the previous part, as the
Schwartz space is also closed under complex conjugation.

2.5.3 Wilson bases

A very useful property of the modulation spaces Mp(R) is the existence of a so-
called Wilson basis W(φ) = {ψk,n}k∈Z,n≥0, where φ ∈ L2(R). We will not discuss
the details of this construction, but confine ourselves with knowing that there exists
an orthonormal basisW(φ) = {ψk,n}k∈Z,n≥0 of L2(R) which also is an unconditional
basis (see [23] for background material on unconditional convergence and basis) for
Mp(R) for 1 ≤ p <∞. Furthermore, for every ψ ∈M1(R), the expansion

ψ =
∑

k∈Z,n≥0

〈ψ, ψk,n〉ψk,n

converges unconditionally in the norm of M1(R), and the expression ‖ψ‖ =∑
k,n |〈ψ, ψk,n〉| is a norm on M1(R), equivalent to the usual one [18, 25]. A

Wilson basis with the same properties for M1(Rd) is obtained by taking ten-
sor products. For instance, if {ψk,n}k∈Z,n≥0 is a Wilson basis for M1(Rd), then
{ψk,n ⊗ ψi,j}k,i∈Z,n,j≥0 is a Wilson basis for M1(R2d). Later on we will also need
that a Wilson basis {wm}m∈N for L2(Rd) satisfies ‖wm‖M1 ≤ C for some constant
C [23, Prop. 12.3.8].

2.6 The symplectic Fourier transform

The standard symplectic form σ on R2d is defined for (x1, ω1), (x2, ω2) ∈ R2d

by σ(x1, ω1;x2, ω2) = ω1 · x2 − ω2 · x1. Using the standard symplectic form we
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can introduce a version of the Fourier transform that will be suitable for the
consideration in this text.

Definition 2.7. Let f ∈ L1(R2d). We define the symplectic Fourier transform
Fσf of f to be the function

Fσf(z) =

∫∫
R2d

f(z′)e−2πiσ(z,z′) dz′

for z ∈ R2d, where σ is the standard symplectic form.

If Ff denotes the regular Fourier transform Ff(z) =
∫∫

R2d f(z′)e−2πiz·z′ dz′, it
is easy to see that

Fσf(x, ω) = Ff(ω,−x). (1)

From this it follows that most properties of the Fourier transform carry over to
the symplectic version. One such result that we will need is that the symplectic
Fourier transform has no zeros if and only if the same holds for the regular Fourier
transform. Furthermore, the symplectic Fourier transform may be extended to
L2(R2d), just as the regular Fourier transform. This extended symplectic Fourier
transform is then unitary and its own inverse, a fact that follows easily from the well
known equality FFf = f̌ and equation (1). We now collect some simple results
that follow from manipulating the definition of the symplectic Fourier transform.

Lemma 2.16. Let f ∈ L1(R2d).

1. Fσ(Tzf) = e2πiσ(z,z′)Fσf(z′) for z, z′ ∈ R2d.

2. Fσf̌ = }Fσf .

3. Fσf ∗(z′) = Fσf(−z′).

2.7 Pseudodifferential operators

This section will introduce different procedures for associating a bounded operator
on L2(Rd) to functions on R2d, or more generally to distributions in S ′(Rd). They
come with different formalisms and properties that we will take advantage of,
but any continuous operator A : S → S ′ may be expressed using all of the three
procedures that we consider [23, Thm. 14.3.5].
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2.7.1 The Weyl calculus

A close relative of the STFT is the cross-Wigner distribution of two functions on
Rd. By definition, the cross-Wigner distribution W (ψ, φ) of two functions ψ and φ
is given by

W (ψ, φ)(x, ω) =

∫
Rd
ψ

(
x+

t

2

)
φ

(
x− t

2

)
e−2πiω·t dt.

This expression is similar to the definition of the STFT and the cross-ambiguity
function, and in fact W (ψ, φ) = FσA(ψ, φ) [15, Prop. 175]. We will need a
boundedness result for the cross-Wigner distribution on modulation spaces in
section 8 [13, Prop. 2.5].

Lemma 2.17. If φ ∈M1(Rd)) and ψ ∈Mp(Rd), then W (ψ, φ) ∈M1,p(R2d) and

‖W (ψ, φ)‖M1,p ≤ C‖ψ‖Mp‖φ‖M1

for some constant C.

Our main motivation for studying the cross-Wigner distribution is its connection
with the Weyl calculus. The Weyl calculus provides one of the oldest and most
common quantization procedures.

Definition 2.8. Let σ ∈ S ′(R2d) and ψ, φ ∈ S(Rd). The Weyl transform Lσ of σ
is defined by

〈Lσψ, φ〉 = 〈σ,W (φ, ψ)〉.

σ is called the Weyl symbol of the operator Lσ.

A question that has been discussed extensively in the literature is how the
properties of the symbol σ translates into properties of its Weyl transform Lσ. We
will pick the results that we need from [13, Thm. 3.1].

Theorem 2.18.

1. If 1 ≤ p ≤ 2 and σ ∈ Mp(R2d), then Lσ ∈ T p with ‖Lσ‖T p ≤ C‖σ‖Mp for
some constant C.

2. If 2 ≤ p ≤ ∞ and σ ∈ Mp,p′(R2d) where 1
p

+ 1
p′

= 1, then Lσ ∈ T p with
‖Lσ‖T p ≤ C‖σ‖Mp,p′ for some constant C.
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2.7.2 The integrated Schrödinger representation and twisted convolu-
tion

Another way of associating an operator to a function is to define the operator as a
superposition of time-frequency shifts using the theory of vector-valued integration.

Definition 2.9. The integrated Schrödinger representation is the map ρ : L1(R2d)→
B(L2(Rd)) defined by

ρ(f) =

∫∫
R2d

f(z)e−πix·ωπ(z) dz,

where the integral is defined in the weak and pointwise sense discussed in section
2.4. We say that f is the twisted Weyl symbol of ρ(f).

Many properties of the integrated Schrödinger representation are proved in [23]
and [20]. One such property is the important product formula ρ(f)ρ(g) = ρ(f\g),
where the product \ is the twisted convolution, defined by

f\g(z) =

∫∫
R2d

f(z − z′)g(z′)eπiσ(z,z′) dz′

for f, g ∈ L1(R2d).
For this text it is essential that ρ may be extended to a unitary operator

from L2(R2d) to T 2, and that the twisted convolution f\g may be defined for
f, g ∈ L2(R2d) with norm estimate ‖f\g‖L2 ≤ ‖f‖L2‖g‖L2 . Both of these facts are
proved in [20], in theorem 1.30 and proposition 1.33, respectively.

The relationship between the Weyl calculus and the integrated Schrödinger
representation is neatly expressed using the symplectic Fourier transform: for a
symbol f we have that Lf = ρ(Fσf).

2.7.3 Integral operators

Finally one may assign to a function k on R2d a so-called integral operator Ak on
L2(Rd) by

Akψ(s) =

∫
Rd
k(s, t)ψ(t) dy (2)

for ψ ∈ L2(Rd). k is called the kernel of Ak.

Notation. We will letM denote the set of integral operators Ak with kernel k in
M1(R2d).

As is shown in [25],M is also the set of operators with Weyl symbol or twisted
Weyl symbol in M1(R2d). The next theorem (see [25]) shows that operators inM
have a useful decomposition in terms of the Wilson basis.
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Theorem 2.19. Let k ∈M1(R2d) and let Ak be the integral operator with kernel
k. Let (wn)n∈N be a Wilson basis for L2(Rd), and denote by Wmn the corresponding
Wilson basis for L2(R2d) given by Wmn(x, y) = wm(x)wn(y).

Then Ak ∈ T 1, and Ak =
∑

m,n∈N〈k,Wmn〉wm ⊗ wn where the sum converges
in the T 1 norm.

2.8 Localization operators and the Berezin transform

One important class of pseudodifferential operators for this thesis are the so-called
localization operators, which are also known in the literature as the anti-Wick
operators [8, 20]. Closely related to the localization operators is the Berezin
transform [3], and so we define both these concepts in the following definition.

Definition 2.10. Let ϕ1 and ϕ2 be two functions on Rd, called windows. If f is a
function on R2d, then the localization operator with symbol f is the operator Aϕ1,ϕ2

f

on L2(Rd) defined by

Aϕ1,ϕ2

f ψ =

∫∫
R2d

f(z) · Vϕ1ψ(z)π(z)ϕ2 dz

for ψ ∈ L2(Rd). The integral is interpreted in the weak sense discussed in section
2.4.

If T ∈ B(L2(Rd)), the Berezin transform Bϕ1,ϕ2T is the function on R2d defined
by

Bϕ1,ϕ2T (z) = 〈Tπ(z)ϕ1, π(z)ϕ2〉
for z ∈ R2d. We often write just B and A when the this does not lead to ambiguity.

We will discuss the relation between the localization operators and Berezin
transform in section 5.1.

2.9 Banach modules

The theory of Banach modules includes some very powerful results, in particular
the celebrated Cohen-Hewitt theorem [22]. If we are able to phrase our theory
using Banach modules, we may apply the Cohen-Hewitt theorem to prove new
results with little effort. For this reason we include a short introduction to Banach
modules, based on the PhD-thesis of Graven [22].

Definition 2.11. Let A be a Banach algebra. A left Banach module over A is a
Banach space X together with a module multiplication A×X → X denoted by
(a, x) 7→ ax satisfying the following properties:

1. Module multiplication (a, x) 7→ ax is bilinear.
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2. a(bx) = (ab)x for any a, b ∈ A, x ∈ X.

3. ‖ax‖X ≤ ‖a‖A‖x‖X for any a ∈ A, x ∈ X.

Next we introduce the concepts of order-free and essential Banach modules.

Definition 2.12. Let X be a left Banach module over a Banach algebra A.

1. The essential submodule Xe of X is the closed linear span of {ax : a ∈ A, x ∈
X}. We say that X is an essential module if X = Xe.

2. We say that X is order-free if ax = 0 for all a ∈ A implies that x = 0.

The previously mentioned Cohen-Hewitt theorem requires the Banach algebra
to have a bounded approximate identity, which we now define.

Definition 2.13. Let A be a Banach algebra. An approximate identity for A is a
net {ei}i∈I , where I is a directed set, such that

lim
i∈I

eia = a and lim
i∈I

aei = a for any a ∈ A.

The approximate identity is bounded if ‖ei‖A ≤ 1 for any i ∈ I.

It is well known that the Banach algebra L1(G) has a bounded approximate
identity for any locally compact group G [21, Prop. 2.44].

Theorem 2.20 (Cohen-Hewitt factorization theorem). Let A be a Banach algebra
with a bounded approximate identity. If X is a Banach module over A, then
Xe = {ax : a ∈ A, x ∈ X}.

2.9.1 Shifts of Banach spaces

We now turn to the less-known notion of a shift in a Banach space, which can be
defined for a general locally compact group [22]. However, we restrict ourselves
to R2d. We will consider Banach modules over L1(R2d), and write the action of
f ∈ L1(R2d) on x ∈ X as f ∗ x.

Definition 2.14. Let X be a Banach space. A shift τ in X is a family of operators
{τz}z∈R2d on X with the following properties:

1. For x ∈ X and z ∈ R2d, the mapping x 7→ τz(x) is linear and ‖τz(x)‖X =
‖x‖X .

2. If z, z′ ∈ R2d, then τzτz′ = τz+z′ , where τzτz′ is the composition of operators.

3. τ0 is the identity operator on X.
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We will be particularly interested in the cases where the map z 7→ τz is strongly
continuous, i.e. z 7→ τz(x) is continuous from R2d to X for every fixed x ∈ X. If
the module structure agrees with the shift of a Banach space X, we say that that
X is a Banach module with shift.

Definition 2.15. Let X be a left Banach module over L1(R2d) with a shift τ . We
say that X is a module with shift if τz(f ∗x) = Tz(f)∗x = f ∗ τz(x) for any z ∈ R2d,
f ∈ L1(R2d) and x ∈ X.

The next theorem will show that any Banach space with a strongly continuous
shift can be made into a module with shift in a unique way, and this module
will have certain nice properties such as being an essential module. This theorem
is [22, Thm. 3.1.5], and we refer the interested reader to the references in that
paper.

Theorem 2.21. Let X be a Banach space with a strongly continuous shift τ . Then
there exists a unique module multiplication ∗ : L1(R2d)×X → X making X into a
module with shift. With this module multiplication X is an essential L1(R2d)-module,
and ∗ is given by f ∗ x =

∫∫
R2d f(z)τz(x) dz for f ∈ L1(R2d) and x ∈ X, where

the integral is interpreted in the weak sense. Furthermore, if {fi}i∈I is a bounded
approximate identity for L1(R2d), then τz(x) = limi Tz(fi) ∗ x for any x ∈ X.

If X is an L1(R2d)-module with shift τ , we say that τ is strongly continuous
at x ∈ X if z 7→ τz(x) is continuous from R2d into X. We can now state a general
proposition [22, Thm. 3.1.7] describing such elements for an order-free module X
with a shift.

Proposition 2.22. Let X be an order-free module over L1(R2d) with shift τ . Then
the elements of X where τ is strongly continuous are exactly the elements of the
form f ∗ x for f ∈ L1(R2d) and x ∈ X.

2.10 Complex interpolation of Banach spaces

Complex interpolation is a powerful tool for generalizing results on Banach spaces
from particular cases to whole classes of Banach spaces. For instance, one may
often generalize a result known to be true for L1(R) and L∞(R) to a result for all
Lp-spaces for 1 ≤ p ≤ ∞. Since we will use this machinery on several occasions, we
cite the relevant definitions and theorems from [7], which is the standard reference
for this theory.

Definition 2.16. A pair (X0, X1) of Banach spaces X0 and X1 are said to be
compatible if there exists a topological vector space Z such that X0 and X1 are
subspaces of Z, and the inclusions X0, X1 ↪→ Z are continuous.
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In the setting of the definition above, we will in particular have thatX0+X1 ⊂ Z,
where X0 +X1 = {x0 + x1 : x0 ∈ X0, x1 ∈ X1}.

Definition 2.17. If (X0, X1) and (Y0, Y1) are two compatible pairs of Banach
spaces, then a pair of Banach spaces (X, Y ) is an interpolation pair of (X0, X1)
and (Y0, Y1) if

1. X0 ∩X1 ⊂ X ⊂ X0 +X1 and Y0 ∩ Y1 ⊂ Y ⊂ Y0 + Y1,

2. Whenever T is a linear operator T : X0 + X1 → Y0 + Y1 such that both
T
∣∣
X0

: X0 → Y0 and T
∣∣
X1

: X1 → Y1 are bounded, then T
∣∣
X

: X → Y is also
bounded.

The interpolation pair is said to be of interpolation exponent θ ∈ (0, 1) if there
exists a constant C such that

‖TX→Y ‖ ≤ C‖TX0→Y0‖1−θ‖TX1→Y1‖θ,

where ‖TXj→Yj‖ is the operator norm of T as an operator from Xj to Yj . If C = 1,
then (X, Y ) is an exact interpolation pair.

We now have all we need to state the main theorem, which apart from notation
is theorem 4.1.2 in [7].

Theorem 2.23. If (X0, X1) og (Y0, Y1) are two pairs of compatible Banach spaces,
then for any θ ∈ (0, 1) there exist two Banach spaces (X0, X1)θ and (Y0, Y1)θ that
form an exact interpolation pair with exponent θ.

There is an explicit description of the spaces (X0, X1)θ that may be found in [7],
but we will only be interested in a few special cases where the interpolation pairs
have been identified with well-known spaces. These results have been collected
from equation 1.8 in [11] and theorem 5.1.1 in [7].

Theorem 2.24. Let 1 ≤ p1, q1 <∞ and 0 < θ < 1. Then the pairs (Lp1(Rd), Lq1(Rd))
and (T p1 , T q1) are compatible pairs, and

1. (T p1 , T q1)θ = T p, where p is given by 1
p

= 1−θ
p1

+ θ
q1
,

2. (Lp1(Rd), Lq1(Rd))θ = Lp, where p is given by 1
p

= 1−θ
p1

+ θ
q1
.
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2.11 A Banach space result

Recall that if X and Y are Banach spaces and T : X → Y is a bounded linear
operator, then the adjoint T ∗ : Y ∗ → X∗ is defined by 〈T ∗y∗, x〉 = 〈y∗, Tx〉 for
x ∈ X, y∗ ∈ Y ∗. The bracket denotes duality, and X∗ is the dual space of X. We
will need the following result relating the properties of T and T ∗ [42, Thm. 4.12].

Proposition 2.25.

1. The range of T is dense if and only if T ∗ is injective.

2. The range of T ∗ is weak* dense if and only if T is injective.

3 A shift for operators
In [46], Werner defined the convolution of two operators and of a function with
an operator. One goal of this thesis is to explain these definitions, and in this
section we will study the different components of Werner’s definition. First we
need to identify these components, and we turn to the well-known convolution
of two functions for inspiration. The convolution of two functions f and g on
R2d may be written as f ∗ g(x) =

∫∫
R2d f(y)Tx(ǧ)(y) dy. We see that there are

three operations involved: the translation Tx, the reflection ǧ and the integral. In
order to define the convolution of operators, we need to find three corresponding
operations on operators. If we start with the integral, it seems reasonable to say
that it corresponds to the trace of a trace class operator. After all, the trace is
the most natural linear functional associated to trace class operators, just like the
integral is for L1(R2d). As for translation and reflection of operators, the answer is
provided in the next definition.

Definition 3.1. Given an operator A ∈ B(L2(Rd)) and z ∈ R2d we define two
operators αzA and Ǎ by

αzA = π(z)Aπ(z)∗,

Ǎ = PAP.

The notation αzA was introduced by Werner in [46], and will be used in this text
as it drastically improves the readability of many statements as well as making it
easier to spot when propositions are applicable. When we generalize the convolution
to operators, the guiding intuition will be that αz is the operator-analogue for
the translation Tz of functions, and A 7→ Ǎ is the operator-analogue of f 7→ f̌ for
functions. Thus we will refer to the operators αzA as the translates or shifts of A.

The rest if this section will be dedicated to a detailed study of the operations
introduced in definition 3.1. In order to understand the operator αz, we will need
to discuss the time-frequency shifts π(z).
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Lemma 3.1. {π(z)}z∈R2d form a projective representation of R2d corresponding to
the cocycle c(z, z′) = e−2πiω′·x. In other words, the following hold for z = (x, ω) and
z′ = (x′, ω′) in R2d:

1. π(z)π(z′) = e−2πiω′·xπ(z + z′).

2. π(0) is the identity operator on L2(Rd).

3. The operators π(z) are unitary, and π(z)∗ = e−2πix·ωπ(−z).

4. The map z 7→ π(z) is strongly continuous, which means that if zn → z in
R2d, then π(zn)ψ → π(z)ψ in L2(Rd) for any fixed ψ ∈ L2(Rd).

Proof. 1. By lemma 2.10 we have the commutation relation TxMω = e−2πiω′·xMωTx,
and since π(z) = MωTx this implies the result:

π(z)π(z′) = MωTxMω′Tx′

= e−2πiω′·xMωMω′TxTx′

= e−2πiω′·xπ(z + z′).

2. Follows directly from the definition of π(z).

3. We know that π(z) = MωTx, and therefore the adjoint is π(z)∗ = T ∗xM
∗
ω.

Since Mω is just multiplication with the complex function e2πiω·t, one easily
confirms that M∗

ω = M−ω. For ψ, φ ∈ L2(Rd) we calculate that

〈Txψ, φ〉 =

∫
Rd
ψ(t− x)φ(t) dt

=

∫
Rd
ψ(t′)φ(t′ + x) dt

= 〈ψ, T−xφ〉

using the change of variable t′ = t−x. Thus T ∗x = T−x and π(z)∗ = T−xM−ω =
e−2πix·ωπ(−z), where we have used the commutation relation in lemma 2.10.
Using parts (1) and (2) it is then trivial to check that π(z)∗ = π(z)−1.

4. We shall divide the proof into three steps. First, we will show that the map
z 7→ Mωψ is continuous from R2d to L2(Rd) for any ψ ∈ L2(Rd). Then we
establish that the same is true for the translations x 7→ Txψ(t), and finally
prove a theorem on pointwise multiplication of strongly continuous maps to
conclude that z 7→ π(z) is strongly continuous.
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Consider a sequence ωn converging to 0 in Rd. We are interested in ‖Mωnψ−
ψ‖2

L2 = 〈Mωnψ−ψ,Mωnψ−ψ〉L2 , and writing out this inner product we find
that

‖Mωnψ − ψ‖2
L2 =

∫
Rd
|e2πiωn·t − 1|2|ψ(t)|2 dt.

Since we have that |e2πiωn·t − 1|2|ψ(t)|2 ≤ 4|ψ(t)|2, we may appeal to the
dominated convergence theorem to conclude that lim

zn→0
‖Mωnψ − ψ‖L2 = 0.

Now consider a sequence xn ∈ Rd converging to 0. We want to show that
‖Txnψ − ψ‖L2 → 0 as xn → 0 for any ψ ∈ L2(Rd). Following the proof
in [24, Ex. 10.12], we first assume that ψ is a compactly supported continuous
function. Since ψ is continuous, Txnψ → ψ pointwise as xn → 0. This
convergence will actually be uniform due to the compact support of ψ and the
fact that pointwise continuity on a compact set is uniform. The compactness
of the support also allows us to find a compact set K ⊂ Rd containing the
support of both ψ and Txnψ for any n. Combining these results we find that

‖Txnψ − ψ‖2
L2 =

∫
Rd
|Txnψ(t)− ψ(t)|2 dt

=

∫
K

|Txnψ(t)− ψ(t)|2 dt

≤ sup
t∈K

(|Txnψ(t)− ψ(t)|2)µ(K),

where µ denotes the Lebesgue measure. The final expression will converge to
0 as xn → 0 by the aforementioned uniform convergence.

If ψ is a general element of L2(Rd), we will use the result that the compactly
supported continuous functions are dense in L2(Rd) [41, Prop. 3.14]. Given
ε > 0, we therefore pick a compactly supported and continuous φ such that
‖ψ − φ‖L2 < ε. By the previous result we may find an N ∈ N such that
‖Txnφ− φ‖L2 < ε for n ≥ N . Assuming that n ≥ N , we find that

‖Txnψ − ψ‖L2 ≤ ‖Txnψ − Txnφ‖L2 + ‖Txnφ− φ‖L2 + ‖φ− ψ‖L2

= ‖Txnφ− φ‖L2 + 2‖φ− ψ‖L2

< 3ε,

where the equality uses that Tx clearly preserves the norm in L2(Rd). There-
fore the map x 7→ Tx is strongly continuous.
Finally, π(z) = MωTx, so we would be done if we could show that the
pointwise multiplication of strongly continuous maps on R2d is strongly
continuous. In other words, if z 7→ A(z) and z 7→ B(z) are strongly continuous
from R2d to B(L2(Rd)), we want to show that z 7→ B(z)A(z) is strongly
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continuous.Therefore we consider a sequence zn in R2d converging to some
z. By assumption the sequences A(zn)ψ and B(zn)ψ converge for any ψ ∈
L2(Rd). In particular, the sequence ‖B(zn)ψ‖ is bounded, and therefore the
uniform boundedness principle [9, Thm. 4.10] gives a constant CB such that
‖B(zn)‖ ≤ CB for any n ∈ N. For a fixed ψ ∈ L2(Rd), we then calculate that

‖B(zn)A(zn)ψ −B(z)A(z)ψ‖L2 ≤ ‖B(zn)A(zn)ψ −B(zn)A(z)ψ‖L2

+ ‖B(zn)A(z)ψ −B(z)A(z)ψ‖L2

≤ CB‖A(zn)ψ −A(z)ψ‖L2 + ‖(B(zn)−B(z))(A(z)ψ)‖L2 ,

and the final expression converges to zero by the assumptions on A(zn) and
B(zn). This shows that z 7→ B(z)A(z) is strongly continuous, as we wanted
to prove.

Since the operations αz and A 7→ Ǎ will generalize translation and reflection
on functions to bounded operators, we may expect them to have certain nice
properties and to interact with each other in predictable ways. Several results of
this nature are collected in the next lemma. For instance, part (2) shows that
the composition of two translations αz and αz′ is αz+z′ as one would expect for a
translation operator.

Lemma 3.2. Let A ∈ B(L2(R2d)), T ∈ T p for 1 ≤ p ≤ ∞ and let z, z′ ∈ R2d.

1. ‖αzT‖T p = ‖T‖T p and ‖Ť‖T p = ‖T‖T p.

2. αz(αz′A) = αz+z′A.

3. αzπ(z′) = e2πiσ(z,z′)π(z′), where σ is the standard symplectic form.

4. (αzA)∗ = αzA
∗ and

(
Ǎ
)∗

= (A∗)ˇ.

5. π(z)P = Pπ(−z), }π(z) = π(−z) and (αzA)ˇ = α−zǍ.

Proof. 1. Both statements concern the operation of sending T to UTU∗ for
some unitary operator U . The Schatten p-class norm of T is defined to be
the `p-norm of the eigenvalues of |T |, and hence the Schatten p-class norm of
UTU∗ is the `p-norm of the eigenvalues of |UTU∗|. It is easy to show that
|UTU∗| = U |T |U∗ for any unitary operator U . The statement would therefore
follow if we could show that |T | and U |T |U∗ have the same eigenvalues. The
simple exercise of showing this is left to the reader.
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2. We know that π(z)π(z′) = e−2πix·ω′π(z + z′) and π(z)∗ = e−2πix·ωπ(−z) from
the previous lemma. The statement then follows from a calculation:

π(z)π(z′)Aπ(z′)∗π(z)∗ = e−2πix·ω′π(z + z′)A(π(z)π(z′))∗

= e−2πix·ω′π(z + z′)A(e−2πix·ω′π(z + z′))∗

= π(z + z′)Aπ(z + z′)∗.

3. This is another consequence of π(z)π(z′) = e−2πix·ω′π(z + z′), which we apply
twice to find that

π(z)π(z′)π(z)∗ = e−2πix·ω′π(z + z′)e−2πix·ωπ(−z)

= e−2πix·(ω′+ω)e−2πi(x+x′)·(−ω)π(z′)

= e2πi(x′·ω−x·ω′)π(z′)

= e2πiσ(z,z′)π(z′).

4. Follows easily from the definitions and well known properties of the adjoint.

5. The result that Pπ(z)P = π(−z) is proved by writing the operators out using
their definitions – a straightforward calculation left to the reader. From this
we immediately get π(z)P = Pπ(−z).

Then letA ∈ B(L2(Rd)). Using Pπ(z)P = π(−z) we find that (π(z)Aπ(z)∗)ˇ =
Pπ(z)Ae−2πix·ωπ(−z)P = π(−z)PAPe−2πix·ωπ(z) = π(−z)Ǎπ(−z)∗, as de-
sired.

Remark. • Part (4) shows that we may write Š∗ for an operator S without
causing confusion about which of the two operations should be performed
first.

• Although z 7→ π(z) is merely a projective representation of R2d over the
Hilbert space L2(Rd), part 2 shows that {αz}z∈R2d is a unitary representation
of R2d over the Hilbert Schmidt operators. This was also noted by Feichinger
and Kozek in [19].

The fact that z 7→ π(z) is a strongly continuous map from R2d to B(L2(Rd))
implies similar results for αz.

Proposition 3.3. 1. For p <∞, the map z 7→ αzT is continuous from R2d to
T p for any fixed T ∈ T p.

2. The map z 7→ αzT is continuous from R2d to K(L2(Rd)) for any fixed
T ∈ K(L2(Rd)).
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3. The map z 7→ αzA is weak*-continuous from R2d to B(L2(Rd)) for any fixed
A ∈ B(L2(Rd)).

Proof. 1. We refer to Grümm’s convergence theorem [43, Thm. 2.19] for a proof
of this fact.

2. Let {zn}n∈N be a sequence in R2d converging to z, and let ε > 0. From
the singular value decomposition of T ∈ K(L2(Rd)), we find a finite rank
operator S such that ‖T − S‖B(L2) <

ε
3
. Since S is a trace class operator

and ‖ · ‖B(L2) ≤ ‖ · ‖T 1 , we can use part (1) to find N ∈ N such that
‖αznS − αzS‖B(L2) <

ε
3
for n > N . For such n we find that

‖αzT − αznT‖B(L2) ≤ ‖αzT − αzS‖B(L2) + ‖αzS − αznS‖B(L2) + ‖αznS − αznT‖B(L2)

<
ε

3
+
ε

3
+
ε

3
= ε.

We have used that αz is an isometry from part (1) of lemma 3.2, so ‖αznS −
αznT‖B(L2) = ‖αzn(S − T )‖B(L2) = ‖S − T‖B(L2).

3. Assume that {zn}n∈N is a sequence in R2d converging to z. We need to show
that 〈αznA, T 〉 → 〈A, T 〉 for any T ∈ T 1, where the brackets denote duality
given by 〈αznA, T 〉 = tr((αznA)T ∗).

Recall that π(z) is strongly continuous and that pointwise multiplication of
strongly continuous maps is strongly continuous, as we showed when proving
lemma 3.2. Therefore the map z 7→ (αznA)T ∗ is strongly continuous. Now
let {ψm}m∈N be an orthonormal basis of L2(Rd) consisting of eigenvectors of
|T ∗|. By using the definition of the trace and assuming that the sum and
limit can be interchanged, we find that

lim
n→∞

tr((αznA)T ∗) = lim
n→∞

∑
m∈N

〈(αznA)T ∗ψm, ψm〉

=
∑
n∈N

lim
n→∞
〈(αznA)T ∗ψm, ψm〉

=
∑
n∈N

〈(αzA)T ∗ψm, ψm〉 = tr((αzA)T ∗),

where we have also used that the inner product is continuous in both
coordinates by the Cauchy-Schwarz inequality. It only remains to show
that we are allowed to take the limit inside the sum. To apply the dom-
inated convergence theorem, we need a sequence {am}m∈N ∈ `1 such that
|〈(αznA)T ∗ψm, ψm〉| ≤ am for every m ∈ N. Let T ∗ = U |T | be the polar
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decomposition of T ∗. We then find that

|〈(αznA)T ∗ψm, ψm〉| ≤ ‖(αznA)U |T ∗|ψm‖L2

≤ ‖A‖B(L2)‖|T ∗|ψm‖L2 ,

where we have used that ‖U‖B(L2) ≤ 1 and ‖αznA‖B(L2) = ‖A‖B(L2). But
‖|T ∗|ψm‖L2 is merely the m’th singular value of the trace class operator T ∗,
since we picked our orthonormal basis to be eigenvectors of |T ∗|. Hence
{|T ∗|ψm}m∈N ∈ `1, and we can safely apply the dominated convergence
theorem with am = ‖A‖B(L2)‖|T ∗|ψm‖L2 .

Remark. It is well-known that the analogous results hold for the Lp-spaces; the
map z 7→ Tz is strongly continuous on Lp for p < ∞ and weak* continuous on
L∞ [29].

Finally, we will consider how the operations from definition 3.1 affect the Weyl
symbol of an operator. This will serve two purposes. One the hand hand it will
emphasize that the translations αz and reflections S 7→ Š are natural analogues of
the translations and reflection of functions. On the other hand it will show that the
setM of operators with Weyl symbol in M1(R2d) is closed under these operations.

Lemma 3.4. Let f ∈ L1(R2d), and let Lf be the Weyl transform of f .

• αz(Lf ) = LTzf for z ∈ R2d.

• |Lf = Lf̌ .

• L∗f = Lf∗.

In particular, if S ∈M, then αz(S), Š, S∗ ∈M.

Proof. From section 2.7.2 we know that the twisted Weyl symbol of Lf is Fσf , so
Lf =

∫∫
Fσf(z′)e−iπω

′·x′π(z′) dz′ where z′ = (x′, ω′). Using this representation of
Lf will allow us to use the results from lemma 3.2.

1. From proposition 2.8 and part (3) of lemma 3.2 we find that

π(z)Lfπ(z)∗ =

∫∫
R2d

Fσf(z′)e−iπω
′·x′αz(π(z′)) dz′

=

∫∫
R2d

Fσf(z′)e2πiσ(z,z′)e−iπω
′·x′π(z′) dz′

=

∫∫
R2d

Fσ(Tzf)(z′)e−iπω
′·x′π(z′) dz′ = LTzf .

We have used that Fσ(Tzf)(z′) = Fσf(z′)e2πiσ(z,z′) from lemma 2.16.
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2. By definition |Lf = PLfP . Using proposition 2.8 and part (5) of lemma 3.2
we compute that

PLfP =

∫∫
R2d

Fσf(z′)e−iπω
′·x′Pπ(z′)P dz′

=

∫∫
R2d

Fσf(z′)e−iπω
′·x′π(−z′) dz′

=

∫∫
R2d

Fσf(−z′)e−iπω′·x′π(z′) dz′

=

∫∫
R2d

Fσf̌(z′)e−iπω
′·x′π(z′) dz′ = Lf̌ ,

where the penultimate step uses Fσf̌ = }Fσf from lemma 2.16.

3. Let ψ, φ ∈ L2(Rd). By the weak definition of the integral we find that

〈Lfψ, φ〉 =

∫∫
R2d

Fσf(z′)e−iπω
′·x′〈π(z′)ψ, φ〉 dz′

=

∫∫
R2d

Fσf(z′)eiπω
′·x′〈ψ, π(−z′)φ〉 dz′

=

∫∫
R2d

Fσf(z′)e−iπω′·x′〈π(−z′)φ, ψ〉 dz′

= 〈
∫∫

R2d

Fσf(z′)e−iπω′·x′π(−z′) dz′φ, ψ〉

= 〈ψ,
∫∫

R2d

Fσf(−z′)e−iπω′·x′π(z′) dz′φ〉 = 〈ψ,Lf∗φ〉.

We have used that Fσf ∗(z′) = Fσf(−z′) from lemma 2.16.

As we have discussed,M consists of operators with Weyl symbol in M1(R2d). We
have just shown that if S has Weyl symbol f , then αzS, Š and S∗ have Weyl symbols
Tzf , f̌ and f ∗. Since we proved that f ∈M1(R2d) implies Tzf, f̌ , f ∗ ∈M1(R2d) in
lemma 2.15, we get that αz(S), Š, S∗ ∈M.

4 Convolutions of operators and functions
Now that we have studied the necessary prerequisites, we will define the convolution
of two operators and of an operator with a function. We will follow [46] by first
considering functions in L1(R2d) and operators in T 1, before we extend to the other
Lp-spaces and Schatten p-classes. In section 8 we then introduce the modulation
spaces.
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To motivate the definitions, consider the following two alternative expressions
for the convolution of two functions:

f ∗ g(x) =

∫∫
R2d

f(y)Tx(ǧ)(y) dy (3)

f ∗ g =

∫∫
R2d

f(y)Ty(g) dy, (4)

where the last integral is interpreted in the weak sense to define a function in
L1(Rd). That this really is an equivalent expression for the convolution is discussed
in appendix 4 in [21].

If we use equations (3) and (4) as starting points, and simply replace Tx with
αx, the integral with the trace, and reflection of functions with S 7→ Š for operators,
we are led to the following definition.

Definition 4.1. Let f, g ∈ L1(R2d) and T, S ∈ T 1. We define the following
convolutions

f ∗ g(x) =

∫∫
R2d

f(y)g(x− y) dy,

S ∗ T (z) = tr(Sαz(Ť )),

f ∗ S := S ∗ f =

∫∫
R2d

f(y)αy(S) dy,

where the last integral is interpreted in the weak and pointwise sense as discussed
in section 2.4. The first two definitions define a function on R2d whereas the last
definition defines an operator on L2(Rd).

Remark. 1. By the linearity of every operation in the definition, we see that the
convolutions are linear in both arguments.

2. For the convolution of two trace class operators S and T , an elementary
calculation using lemma 3.2 shows that an equivalent form of S ∗T is given by
S ∗ T (z) = tr(Šα−zT ). We will use this form whenever it is more convenient.

3. If we glance back at the proof of part (3) of proposition 3.3, we see that we
actually proved that S ∗ T is a continuous function.

Definition 4.1 raises two natural questions. First, we might ask which spaces
of operators and functions the convolutions belong to. Furthermore, if we fix
a function or an operator, is convolution with this fixed operator a continuous
mapping between these spaces? The next lemma answers these questions except
for the convolution of two operators, which is proved separately in lemma 4.2.
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Lemma 4.1. If f, g ∈ L1(R2d) and S ∈ T 1, then

f ∗ g ∈ L1(R2d),

f ∗ S ∈ T 1,

with norm estimates ‖f ∗ S‖T 1 ≤ ‖f‖L1‖S‖T 1 and ‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1.

Proof. The proof for f ∗ g is standard, but included for completeness.

‖f ∗ g‖L1 =

∫∫
R2d

∣∣∣∣∫∫
R2d

f(y)g(x− y) dy

∣∣∣∣ dx
≤
∫∫

R2d

∫∫
R2d

|f(y)g(x− y)| dy dx

≤
∫∫

R2d

|f(y)|
∫∫

R2d

|g(x− y)| dx dy

=

∫∫
R2d

|f(y)| dy ‖g‖L1

= ‖f‖L1‖g‖L1 ,

where we have used Tonelli’s theorem to switch the order of integration.
The statement for f ∗ S is exactly the setting for proposition 2.9, so it follows

from that proposition.

We now proceed to prove the corresponding statement for the convolution of
two operators, which is [46, Lem. 3.1]. The reason for making this a separate
lemma is that it is associated with a very useful equality that generalizes Moyal’s
identity, which we will need to refer to on many occasions.

Lemma 4.2. Let S, T ∈ T 1. The function z 7→ tr(SαzT ) for z ∈ R2d is integrable
and ‖tr(SαzT )‖L1 ≤ ‖S‖T 1‖T‖T 1.

Furthermore, ∫∫
R2d

tr(SαzT ) dz = tr(S)tr(T ).

Proof. We start by showing the norm-inequality. First use the singular value
decomposition of the operators S and T to write

S =
∑
m∈N

smψm ⊗ φm T =
∑
n∈N

tnηn ⊗ ξn,

where {sm}m∈N and {tn}n∈N are the singular values of S and T , respectively, and
the sets {ψm}m∈N, {φm}m∈N, {ηn}n∈N and {ξn}n∈N are orthonormal in L2(Rd). Then
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extend the set {ψm}m∈N to an orthonormal basis {ei}i∈N of L2(Rd). Using this
basis to calculate the trace, we find that

tr(SαzT ) =
∑
i∈N

〈Sπ(z)Tπ(z)∗ei, ei〉

=
∑
i,n∈N

tn〈π(z)∗ei, ξn〉〈Sπ(z)ηn, ei〉

=
∑

i,m,n∈N

smtn〈π(z)∗ei, ξn〉〈π(z)ηn, φm〉〈ψm, ei〉

=
∑
m,n∈N

smtn〈π(z)∗ψm, ξn〉〈π(z)ηn, φm〉

=
∑
m,n∈N

smtnVξnψm(z)Vηnφm(z).

By Moyal’s identity, Vξnψm, Vηnφm ∈ L2(R2d), and so VξnψmVηnφm ∈ L1(R2d) by
Hölder’s inequality. The following computation, which exploits both Moyal’s identity
and Hölder’s inequality, then shows that the series above converges absolutely in
L1(Rd) with the desired norm estimates.

‖
∑
m,n∈N

smtnVξnψmVηnφm‖L1 ≤
∑
m,n∈N

smtn‖VξnψmVηnφm‖L1

≤
∑
m,n∈N

smtn‖Vξnψm‖L2‖Vηnφm‖L2

=
∑
m,n∈N

smtn‖ξn‖L2‖ψm‖L2‖ηn‖L2‖φm‖L2

=
∑
m,n∈N

smtn = ‖S‖T 1‖T‖T 1 .

The equality
∫∫

R2d tr(SαzT ) dz = tr(S)tr(T ) now follows by using Moyal’s iden-
tity. We have already seen in a previous calculation that tr(SαzT ) =

∑
m,n∈N smtnVξnψmVηnφm,

and that this expression is integrable. If we integrate the expression, we use Moyal’s
identity to find that∫∫

R2d

tr(SαzT ) dz =

∫∫
R2d

∑
m,n∈N

smtnVξnψmVηnφm dz

=
∑
m,n∈N

smtn

∫∫
R2d

VξnψmVηnφm dz

=
∑
m,n∈N

smtn〈ψm, φm〉〈ηn, ξn〉

= tr(S)tr(T ),
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where the last equality follows from a straightforward calculation of the traces of S
and T .

Remark. If we pick S = ψ ⊗ φ and T = η ⊗ ξ for φ, ψ, η, ξ ∈ L2(Rd), it is easy to
see from the preceding proof that tr(SαzT ) = VξψVηφ, and one easily calculates
that tr(S) = 〈ψ, φ〉 and tr(T ) = 〈η, ξ〉. In this case the equality in lemma 4.2 is
simply Moyal’s identity, so the lemma really generalizes this identity.

To sum up this section, we have defined various convolutions between functions
in L1(R2d) and operators in T 1, and we have shown that the result of the convolution
always is an object belonging to one of those two spaces. Furthermore, the norm
estimates provided in the lemmas 4.1 and 4.2 show that taking convolutions with a
fixed operator or function always is a continuous operation.

4.1 Extending the domains of the convolutions to the dual
spaces

So far we have defined convolutions of objects in L1(R2d) and T 1, but based on the
theory of convolutions of functions one could expect that the convolution may be
defined for objects in the Lp-spaces and Schatten p-classes. The first step in this
direction will be to define the convolution when one factor belongs to L1(R2d) or
T 1, and the other factor belongs to one of the dual spaces L∞(R2d) or B(L2(Rd)).
Since one of the factors belongs to a dual space, these convolutions may be defined
by duality, as we will show shortly. After doing this, the convolutions on Lp-spaces
and Schatten p-classes may be defined using the interpolation argument outlined
in section 2.10.

To define an object in B(L2(Rd)) or L∞(R2d) by duality means that we consider
B(L2(Rd)) and L∞(R2d) as the dual spaces of T 1 and L1(R2d), respectively. For
instance, to define h ∗ g ∈ L∞(R2d) when h ∈ L∞(R2d) and g ∈ L1(R2d), we need
to define 〈h ∗ g, f〉 for any f ∈ L1(R2d). To motivate the definition of 〈h ∗ g, f〉,
we will use that definition 4.1 already defines h ∗ g for h ∈ L1(R2d) ∩ L∞(R2d),
and we need our definitions to agree in this case. We therefore assume that
h ∈ L1(R2d) ∩ L∞(R2d) and f, g ∈ L1(R2d). We calculate using Fubini’s theorem
that

〈h ∗ g, f〉 =

∫∫
R2d

h ∗ g(z)f(z) dz

=

∫∫
R2d

∫∫
R2d

h(y) g(z − y)f(z) dy dz

=

∫∫
R2d

h(y)

∫∫
R2d

g(z − y)f(z) dz dy

= 〈h, f ∗ ǧ∗〉.
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In other words, letting h ∗ g act on f produces the same result as letting h act
on f ∗ ǧ∗. But the action of h on f ∗ ǧ∗ is well-defined even when h ∈ L∞(R2d),
since f ∗ ǧ∗ ∈ L1(R2d) and L∞(R2d) is the dual space of L1(R2d). This inspires the
following definition.

Definition 4.2. Let g ∈ L1(R2d), h ∈ L∞(R2d), S ∈ T 1 and A ∈ B(L2(Rd)). We
then define the convolutions h ∗ g ∈ L∞(R2d), A ∗S ∈ L∞(R2d), A ∗ g ∈ B(L2(Rd))
and h ∗ S ∈ B(L2(Rd)) by

〈h ∗ g, f〉 = 〈h, f ∗ ǧ∗〉 ∀f ∈ L1(R2d),

〈A ∗ S, f〉 = 〈A, f ∗ Š∗〉 ∀f ∈ L1(R2d),

〈A ∗ g, T 〉 = 〈A, T ∗ ǧ∗〉 ∀T ∈ T 1,

〈h ∗ S, T 〉 = 〈h, T ∗ Š∗〉 ∀T ∈ T 1.

We further define g ∗h := h∗ g, S ∗A := A∗S, S ∗h := h∗S and g ∗A := A∗ g.

Definition 4.2 was motivated by showing that it agrees with definition 4.1 when
all factors are functions. This implies neither that it agrees with definition 4.1 for
the other cases, nor that duality actions in definition 4.2 actually define bounded,
antilinear functionals. We will need to prove these facts before we proceed, and
this is the content of the next two lemmas.

Lemma 4.3. The definitions 4.2 and 4.1 are compatible.

Proof. We will need to show that the duality actions of the convolution in definition
4.1 satisfy the relations in definition 4.2 whenever both definitions are applicable.
Note that for operators both definitions will be applicable for any trace class
operator, as T 1 ⊂ B(L2(Rd)), whereas it is not true that L1(R2d) ⊂ L∞(R2d).

1. The case where all factors are functions was shown before definition 4.2.

2. Assume that f ∈ L1(R2d) and A, S ∈ T 1. By applying proposition 2.9 we
find that

〈A, f ∗ Š∗〉 = tr((f ∗ ∗ Š)A)

=

∫∫
R2d

f(y)tr(Aαy(Š)) dy

= 〈A ∗ S, f〉,

which is what we wanted to show.

3. Omitted as it is straightforward and similar to the other parts.
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4. Assume that T, S ∈ T 1 and h ∈ L1(R2d) ∩ L∞(R2d). Just as in part (2) we
use proposition 2.9 to calculate that

〈h ∗ S, T 〉 = tr((h ∗ S)T ∗)

=

∫∫
R2d

h(y)tr(T ∗αyS) dy

=

∫∫
R2d

h(y)tr(TαyS∗) dy

= 〈h, T ∗ Š∗〉,

where we have also used that (TαyS
∗)∗ = αy(S)T ∗ by lemma 3.2.

Lemma 4.4. Let g ∈ L1(R2d), h ∈ L∞(R2d), S ∈ T 1 and A ∈ B(L2(Rd)). Defini-
tion 4.2 defines elements of the dual space as claimed, and

‖h ∗ g‖L∞ ≤ ‖h‖L∞‖g‖L1 ,

‖A ∗ S‖L∞ ≤ ‖A‖B(L2)‖S‖T 1 ,

‖A ∗ g‖B(L2) ≤ ‖A‖B(L2)‖g‖L1 ,

‖h ∗ S‖B(L2) ≤ ‖h‖L∞‖S‖T 1 .

Proof. For instance, let h ∈ L∞(R2d) and S ∈ T 1. That h ∗ S acts antilinearly
according to definition 4.2 is easy to check directly. To show boundedness, we use
the norm estimate in lemma 4.2 to calculate that

|〈h ∗ S, T 〉| = |〈h, T ∗ Š∗〉|
≤ ‖h‖L∞‖T ∗ Š∗‖L1

≤ ‖h‖L∞‖S‖T 1‖T‖T 1 .

The proofs in the other cases follow the same pattern: first use the estimate
associated with the operator norm of elements of the dual space, then use the norm
estimate for the convolutions in lemma 4.1 or lemma 4.2.

Remark. If A ∈ B(L2(Rd)) and T ∈ T 1, the convolution A ∗ T defined in definition
4.2 is actually given by the function (A ∗ T )(z) = tr(Aαz(Ť )), in other words
definition 4.1 still holds in this case. To see this, recall that T 1 is an ideal in
B(L2(Rd)), so the function is well-defined. From proposition 2.5 we get that the
bound |tr(Aαz(Ť ))| ≤ ‖A‖B(L2)‖T‖T 1 holds, so tr(Aαz(Ť )) ∈ L∞(R2d). An explicit
calculation then reveals that this agrees with A ∗ T defined in definition 4.2, i.e.
〈tr(Aαz(Ť )), f〉 = 〈A, f ∗ Ť ∗〉 ∀f ∈ L1(R2d).
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4.2 Convolutions of Lp-spaces and Schatten p-classes

As promised, we will now prove a result on convolutions between objects in Lp-
spaces and Schatten p-classes for different values of p. For the convolution of
functions in different Lp-spaces, Young’s inequality [39, p. 28] gives a condition for
when convolutions are defined. The most common proof of this fact uses complex
interpolation, and since theorem 2.24 shows that the interpolation theories of
Lp-spaces and Schatten p-classes are similar, we may generalize Young’s inequality
to the convolutions defined in the previous section. This is the content of the
following proposition.

Proposition 4.5. Let 1 ≤ p, q, r ≤ ∞ be such that 1
p

+ 1
q

= 1 + 1
r
. If f ∈

Lp(R2d), g ∈ Lq(Rd), S ∈ T p and T ∈ T q, then the following convolutions may be
defined and satisfy the norm estimates

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq ,
‖f ∗ T‖T r ≤ ‖f‖Lp‖T‖T q ,
‖g ∗ S‖T r ≤ ‖g‖Lq‖S‖T p ,
‖S ∗ T‖Lr ≤ ‖S‖T p‖T‖T q .

Proof. In the proof we will consider S ∗ T , but the same argument works for the
other two cases. We divide the proof into two different steps, and will use complex
interpolation in both steps.

1. The statement is true for p = 1. In this case q = r, and we consider a fixed
S ∈ T 1. By lemma 4.1 and lemma 4.4 the map T 7→ S∗T is bounded from T 1

to L1(R2d) and from B(L2(Rd)) to L∞(R2d), with operator norm no greater
than ‖S‖T 1 in both cases. Therefore we may use theorem 2.24 with the the
map T 7→ S ∗ T and the compatible pairs of Banach spaces (T 1, B(L2(Rd)))
and (L1(R2d), L∞(R2d)). From that theorem with p1 = 1, q1 =∞, we get that
T 7→ S ∗ T is bounded from T q to Lq(R2d) with operator norm less than or
equal to ‖S‖T 1 , where 1 < q <∞. In other words, ‖S ∗ T‖Lq ≤ ‖S‖T 1‖T‖T q .

2. The statement is true for 1 ≤ p, q, r ≤ ∞. Another way of interpreting the
previous statement ‖S ∗T‖Lq ≤ ‖S‖T 1‖T‖q, is to consider T ∈ T q to be fixed.
The statement then says that the map S 7→ S ∗ T is bounded from T 1 to
Lq(R2d) with operator norm less than or equal to ‖T‖T q . By duality one may
also prove, just as we have done in definition 4.2 and lemma 4.4, that the
map S 7→ S ∗ T is bounded from (T q)∗ = T q′ to L∞(R2d)1, where 1

q′
+ 1

q
= 1,

and with operator norm less than or equal to ‖T‖T q .
1An observant reader might note that we need to prove step (1) for f ∗ T to actually write out

this duality proof, but this is not an issue since the proof of step (1) is proved exactly like step
(1) for S ∗ T .
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Once again we may apply theorem 2.24, this time with the compatible pairs
of Banach spaces (T q, T q′) and (Lq(R2d), L∞(R2d)). From theorem 2.24 we
get that S 7→ S ∗ T is bounded with operator norm at most ‖T‖T q from T p
to Lr(R2d), where p and r are determined by

1

p
= 1− θ +

θ

q′
,

1

r
=

1− θ
q

.

By eliminating θ from the equations, we are left with 1
p

+ 1
q

= 1 + 1
r
, as

desired. Restating this as a norm estimate, we have shown that ‖S ∗ T‖Lr ≤
‖S‖T p‖T‖T q .

4.2.1 Compact operators and continuous functions vanishing at infinity

Based on the previous proposition, the function space Lp(R2d) seems to correspond
to the Schatten p-class in the theory of convolutions. To make this more precise,
Werner introduced the notion of corresponding subspaces in [46]: a linear subspace
X of B(L2(Rd)) and a linear subspace Y of L∞(R2d) are said to be corresponding
if S ∗X ⊂ Y and S ∗ Y ⊂ X for any S ∈ T 1. In this terminology we have shown
in proposition 4.5 that Lp(R2d) corresponds to T p for any 1 ≤ p ≤ ∞. We will
not study the theory of corresponding subspaces in detail, but we will give one
more example. Let C0(R2d) denote the continuous functions on R2d vanishing at
infinity. The next proposition shows that C0(R2d) and K(L2(Rd)) are corresponding
subspaces.

Proposition 4.6. Let S ∈ T 1. If f ∈ C0(R2d) and T ∈ K(L2(R)), then f ∗ S ∈
K(L2(R)) and S ∗ T ∈ C0(R2d).

Proof. We start by considering S ∗ T . Using the singular value decompositions of
Š, write

Š =
∑
m∈N

smψm ⊗ φm

where {sm}m∈N are the singular values of Š (and also of S), and the sets {ψm}m∈N, {φm}m∈N
are orthonormal in L2(Rd). By assumption, the singular values of S are summable.
Now assume that {zn}n∈N is a sequence in R2d such that lim

n→∞
|zn| =∞. We need

to show that lim
n→∞

|T ∗ S(zn)| = 0. From a straightforward calculation we find that

T ∗ S(zn) = tr(TαznŠ) =
∑
m∈N

sm〈Tπ(zn)ψm, π(zn)φm〉.
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Consider the sequence given by π(zn)ψm for some fixed m. For any ψ ∈ L2(Rd),
we have that 〈ψ, π(zn)ψm〉 = Vψmψ(zn)→ 0 as n→∞, since lemma 2.11 asserts
that the STFT vanishes at infinity. In other words, π(zn)ψm → 0 weakly in L2(Rd).
Since T is compact we therefore get that Tπ(zn)ψm → 0 in L2(Rd), and by the
Cauchy-Schwarz inequality 〈Tπ(zn)ψm, π(zn)φm〉 → 0 as n → ∞. The reader
should also note that |〈Tπ(zn)ψm, π(zn)φm〉| ≤ ‖T‖B(L2) by the same inequality.

The idea to conclude the proof is to divide the sum defining T ∗S into two parts.
We will control its tail by the summability of {sm}m∈N, and then control the rest
by the fact that each summand vanishes at infinity, as we have just shown. Start

by picking any ε > 0. Then pick M ∈ N such that
∞∑

m=M+1

sm < ε
2‖T‖B(L2)

. Then, for

any m ∈ {1, 2, ...,M}, pick Nm ∈ N such that |〈Tπ(zn)ψm, π(zn)φm〉| < ε
2M‖S‖B(L2)

whenever n ≥ Nm. If we now let N = max{N1, ...NM} and pick n > N , we find
that

|T ∗ S(zn)| ≤
∑
m∈N

sm|〈Tπ(zn)ψm, π(zn)φm〉|

≤
∞∑

m=M+1

sm‖T‖B(L2) +
M∑
m=1

sm|〈Tπ(zn)ψm, π(zn)φm〉|

<
ε

2
+

(
sup
m∈N

sm

) M∑
m=1

|〈Tπ(zn)ψm, π(zn)φm〉|

<
ε

2
+
ε

2
= ε,

where we have used that ‖S‖B(L2) = sup
m∈N

sm.

To consider continuity, assume that {zn}n∈N is a sequence in R2d where zn → z.
Observe that if we could take the limit inside the sum we would have

lim
n→∞

T ∗ S(zn) = lim
n→∞

∑
m∈N

sm〈Tπ(zn)ψm, π(zn)φm〉

=
∑
m∈N

sm lim
n→∞
〈Tπ(zn)ψm, π(zn)φm〉

=
∑
m∈N

sm〈Tπ(z)ψm, π(z)φm〉 = T ∗ S(z),

by the strong continuity of π(z). To justify that we can take the limit inside
the sum, note that sm|〈Tπ(zn)ψm, π(zn)φm〉| ≤ sm‖T‖ by the Cauchy-Schwarz
inequality, where the right side is summable since S ∈ T 1. This shows that the
dominated convergence theorem applies.
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We finally turn to f ∗ S. By the Stone-Weierstraß theorem the space Cc(R2d)
of continuous functions with compact support is dense in C0(R2d) with the ‖ · ‖L∞
norm, so pick a sequence of functions fn ∈ Cc(R2d) converging to f . Since fn is
continuous with compact support it is in particular integrable, and thus fn ∗S ∈ T 1

by lemma 4.1. Since T 1 ⊂ K(L2(Rd)), the operator fn ∗ S is compact. By lemma
4.4 we then find that

‖f ∗ S − fn ∗ S‖B(L2) = ‖(f − fn) ∗ S‖B(L2)

≤ ‖f − fn‖L∞‖S‖T 1 ,

which shows that fn∗S converges to f ∗S in the operator norm. Since the operators
fn ∗ S are compact, this shows that f ∗ S is compact.

4.3 Basic properties of the convolutions

Having defined the convolutions and extended the definition to more general
classes of functions and operators, we will now prove a few basic properties of the
convolutions. The most important of these will be the associativity of convolutions,
which is a non-trivial fact that we will need when proving the main results of the
text in section 7. First, however, we need to consider how the convolutions interact
with the basic operations defined in section 3, such as αzS and Š for an operator S.
The following result shows that these operations combine with our newly defined
convolutions in ways that are both natural and similar to the corresponding results
for the convolution of functions.

Lemma 4.7. Let f, g ∈ L1(R2d) and S, T ∈ T 1.

1. (f ∗ g)∗ = f ∗ ∗ g∗, (f ∗ S)∗ = f ∗ ∗ S∗ and (S ∗ T )∗ = S∗ ∗ T ∗.

2. (f ∗ g)ˇ = f̌ ∗ ǧ, (f ∗ S)ˇ = f̌ ∗ Š and (S ∗ T )ˇ = Š ∗ Ť .

3. Tz(f ∗ g) = (Tzf) ∗ g, αz(f ∗ S) = (Tzf) ∗ S and Tz(S ∗ T ) = (αzS) ∗ T .

4. The convolution of positive functions and/or operators is positive.

Proof. 1. The case with two functions is trivial, so we skip the proof. To consider
the adjoint (f ∗ S)∗, let ψ, φ ∈ L2(Rd) and use the weak definition of the
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integral to calculate

〈f ∗ Sφ, ψ〉 =

∫∫
R2d

〈f(y)αySφ, ψ〉 dy

=

∫∫
R2d

〈φ, f(y)(αyS)∗ψ〉 dy

=

∫∫
R2d

〈φ, f(y)αyS
∗ψ〉 dy

= 〈φ, f ∗ ∗ S∗ψ〉,

where we have used that (αyS)∗ = αyS
∗ by lemma 3.2. For (S ∗ T )∗, let

{en}n∈N be an orthonormal basis for L2(Rd). Then

(S ∗ T )∗(z) = tr(SαzŤ )

=
∑
n∈N

〈SαzŤ en, en〉

=
∑
n∈N

〈en, SαzŤ en〉

=
∑
n∈N

〈αz(Ť ∗)S∗en, en〉

= tr(S∗αzŤ
∗)

= S∗ ∗ T ∗(z),

where we have used lemma 3.2 once more.

2. The proof for f ∗ g consists of little more than writing out both sides of
the equality. For S, T ∈ T 1 we need to use part (5) of lemma 3.2 and the
property that tr(AB) = tr(BA):

Š ∗ Ť = tr(ŠαzT )

= tr(PSPαzT )

= tr(S(αzT )ˇ)

= tr(Sα−zŤ )

= (S ∗ T )ˇ.

To consider f ∗S we will need the property of vector-valued integration given
in proposition 2.8, with the bounded linear operator P . For ψ ∈ L2(Rd), we
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calculate

(f ∗ S)ˇψ = P

∫∫
R2d

f(y)(αyS)Pψ dy

=

∫∫
R2d

f(y)P (αyS)Pψ dy

=

∫∫
R2d

f(y)(αyS)ˇψ dy

=

∫∫
R2d

f(y)α−yŠψ dy

= (f̌ ∗ Š)ψ,

where the last equality follows from the change of variable y 7→ −y. We have
also used that (αyS)ˇ = α−yŠ by lemma 3.2.

3. The proof of this part is left to the reader, as it is straightforward and very
similar to the preceding proofs.

4. The convolution of two functions is clearly positive, since it is defined by
the integral of a positive function. If f ∈ L1(R2d) is a positive function and
S ∈ T 1 a positive operator, let ψ ∈ L2(Rd) and use the weak definition of
the integral to find that

〈(f ∗ S)ψ, ψ〉 =

∫∫
R2d

f(z)〈αz(S)ψ, ψ〉 dz.

This integrand is positive since f and S are positive.

Finally, assume that S, T ∈ T 1 are positive operators. Since S is positive, it
has a positive square root

√
S. Therefore we can write S ∗T (z) = tr(SαzŤ ) =

tr(
√
Sαz(Ť )

√
S). A trivial calculation shows that

√
Sαz(Ť )

√
S is a positive

operator, and clearly the trace of a positive operator is a positive number.
Hence S ∗ T (z) = tr(

√
Sαz(Ť )

√
S) is positive.

Remark. The last part of point (3) in this proposition states that if we fix some
function g and define an operator Ag on functions by Ag(f) = f ∗ g, then Ag
commutes with translations in the sense that Tz(Ag(f)) = Ag(Tzf). There is a well
known converse to this, stating that if A : L∞(Rd)→ L∞(Rd) is bounded, linear
and commutes with translation, then A = Ag for a unique tempered distribution
g [45, Thm.3.16].

The other two parts of point (3) show that a similar property holds for convo-
lutions with a fixed operator S. If we denote by ΓS the operator that acts on a
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function or operator by taking the convolution with S, then ΓS(Tzf) = αzΓS(f)
and ΓS(αzT ) = TzΓS(T ). Werner calls these conditions on ΓS covariance in [46],
and in the same paper a converse analogous to the one we just saw for functions
is proved. This theory is explained in greater detail and expanded upon in the
appendix on informational completeness. We mention these results to give yet
another reason why the convolutions we have defined really deserve their name. The
interested reader may consult the original paper [46], or the more recent extensions
of the theory in [30].

Proposition 4.8. The convolution operations in definitions 4.1 and 4.2 are com-
mutative and associative.

Proof. Commutativity For f, g ∈ L1(R2d), the proof is standard and consists of
introducing the variable u = x− y in the definitions:

f ∗ g(x) =

∫∫
R2d

f(y)g(x− y) dy

=

∫∫
R2d

f(x− u)g(u) du

= g ∗ f(x).

Then let S, T ∈ T 1. We find that

S ∗ T (z) = tr(SαzŤ )

= tr(Sπ(z)PTPπ(z)∗)

= tr(TPπ(z)∗Sπ(z)P )

= tr(T (α−zS)ˇ)

= tr(TαzŠ)

= T ∗ S(z).

We have made extensive use of the property tr(AB) = tr(BA), and also used part
(5) of lemma 3.2.

Associativity The most interesting case is the convolution of three operators.
We will need lemma 4.2 in addition to some more technical calculations. Let
T1, T2, T3 ∈ T 1. To show that T1 ∗ (T2 ∗ T3) = (T1 ∗ T2) ∗ T3 it will be helpful to
assume an arbitrary operator T0 ∈ T 1. If we can show that the dual space actions
〈T1 ∗ (T2 ∗T3), T0〉 = 〈(T1 ∗T2) ∗T3, T0〉 for any T0, we will have shown that the two
expressions define the same element in the dual space B(L2(Rd)), and therefore the
same operator. Since the duality is given by taking the trace, we need to show that

tr [T0(T1 ∗ (T2 ∗ T3))] = tr [T0((T1 ∗ T2) ∗ T3)] .
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To be pedantic, we should really take the adjoint of the the right argument in 〈·, ·〉,
since that is the way we defined the duality. However, two operators are equal if
and only if their adjoints are equal, so we may consider the expressions without
adjoints.

Writing out the left side of the equation and using proposition 2.9, we find that

tr [T0(T1 ∗ (T2 ∗ T3))] = tr

[
T0

∫∫
R2d

tr(T2αx qT3)αxT1 dx

]
=

∫∫
R2d

tr
[
T2αx qT3

]
tr [(αxT1)T0] dx

=

∫∫
R2d

∫∫
R2d

tr
[
(αxT1)T0αy(T3αx qT2)

]
dy dx.

The last equality uses lemma 4.2 to introduce the second integral, and also exploits
the recently proved commutativity of convolutions to switch the order of T2 and
T3. It is a simple exercise to check that αy(AB) = (αyA)(αyB) for operators A
and B, in particular αy(T3αx qT2) = (αyT3)(αxαy qT2). Inserting this into our main
calculation we get that∫∫

R2d

∫∫
R2d

tr
[
(αxT1)T0αy(T3αx|T2)

]
dy dx =

∫∫
R2d

∫∫
R2d

tr
[
(αxT1)T0(αyT3)(αxαy|T2))

]
dy dx

=

∫∫
R2d

∫∫
R2d

tr
[
(T0αyT3)(αxαy|T2)(αxT1)

]
dy dx.

We may now use Fubini’s theorem to change the order of integration, and then
invoke the equality in lemma 4.2 again to reduce the expression to a form that we
recognize as the equality we wanted to prove.

∫∫
R2d

∫∫
R2d

tr
[
(T0αyT3)αx((αy qT2)T1)

]
dx dy =

∫∫
R2d

tr [T0αyT3] tr
[
(αy qT2)T1

]
dy

= tr [T0((T1 ∗ T2) ∗ T3)] .

The other cases are more elementary, using properties of the weak definition of
the integral. To give an example, let f ∈ L1(R2d) and S, T ∈ T 1. On the one hand
we have by proposition 2.9 that

S ∗ (T ∗ f)(z) = tr

[
Sαz

(∫∫
R2d

f(y)αyT dy

)
ˇ

]
= tr

[
S

∫∫
R2d

f(−y)αz(αyŤ ) dy

]
=

∫∫
R2d

f(−y)tr
[
Sαz+yŤ

]
dy.
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On the other hand we find that

(S ∗ T ) ∗ f(z) =

∫∫
R2d

f(z − y)tr
[
SαyŤ

]
dy,

and a standard change of variable establishes the desired equality.

Propositions 4.5 and 4.8 imply that T p is a Banach module over L1(R2d) for
1 ≤ p ≤ ∞, where the module action of f ∈ L1(R2d) on S ∈ T p is given by
f ∗ S. In fact, we could have obtained this module structure by starting with
α. Section 3 shows that α is a shift on the Banach spaces T p, and even strongly
continuous for p < ∞ by proposition 3.3. Hence, by theorem 2.21, α induces a
unique L1(R2d)-module structure with shift on T p for p < ∞, and theorem 2.21
shows that this module structure is given by the convolutions that we have defined
in definition 4.1. It should be noted that Werner’s convolution of two operators does
not follow from the theory of Banach modules, yet we will see that the convolution
of two operators will be a useful tool to investigate the Banach module structures.

5 The Berezin transform, localization operators and
adjoints

The main novel result of this thesis is that the theory of convolutions defined by
Werner in [46] may be used to reprove and generalize results on the localization
operators and the Berezin transform in [3]. The key fact linking these theories is
that both the Berezin transform and localization operators are obtained by picking
an operator S of a special form, and then considering convolutions with S.

Theorem 5.1. Fix ϕ1, ϕ2 ∈ L2(Rd), and consider the operators ϕ2⊗ϕ1 and ϕ̌1⊗ϕ̌2.
Let T ∈ B(L2(Rd)) and let f be a function on R2d.

The localization operator Aϕ1,ϕ2

f is given by

Aϕ1,ϕ2

f = f ∗ ϕ2 ⊗ ϕ1.

The Berezin transform of T with windows ϕ1 and ϕ2 is given by

Bϕ1,ϕ2T (z) = T ∗ ϕ̌1 ⊗ ϕ̌2.

Proof. The proof will simply consist of calculating f ∗ ϕ2 ⊗ ϕ1 and T ∗ ϕ̌1 ⊗ ϕ̌2.
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First let ψ ∈ L2(Rd). We find that

(f ∗ S)(ψ) =

∫∫
R2d

f(z)(αzS)(ψ) dz

=

∫∫
R2d

f(z)〈π(z)∗ψ, ϕ1〉π(z)ϕ2 dz

=

∫∫
R2d

f(z)Vϕ1ψπ(z)ϕ2 dz

= Aϕ1,ϕ2

f ψ,

which proves the first statement.
Turning to the Berezin transform, let {en}n∈N be an orthonormal basis of L2(Rd).

Using Parseval’s identity, we find that

(T ∗ ϕ̌1 ⊗ ϕ̌2)(z) = tr(Ťα−zϕ̌1 ⊗ ϕ̌2)

=
∑
n∈N

〈Ť π(−z)ϕ̌1 ⊗ ϕ̌2π(−z)∗en, en〉

=
∑
n∈N

〈π(−z)∗en,|ϕ2〉〈Ť π(−z)|ϕ1, en〉

=
∑
n∈N

〈en, π(−z)|ϕ2〉〈Ť π(−z)|ϕ1, en〉

= 〈Ť π(−z)|ϕ1, π(−z)|ϕ2〉
= 〈PTPπ(−z)Pϕ1, π(−z)Pϕ2〉
= 〈Tπ(z)ϕ1, π(z)ϕ2〉 = Bϕ1,ϕ2T (z),

where we have used lemma 3.2 in the last step.

In order to apply the results in section 4 to the Berezin transform and localization
operators, we need to discuss some properties of S = ϕ2 ⊗ ϕ1. If ϕ1, ϕ2 ∈ L2(Rd),
then S ∈ T 1 and ‖S‖T 1 = ‖S‖B(L2) = ‖ϕ1‖L2‖ϕ2‖L2 , as a simple calculation shows.
Therefore proposition 4.5 applies, and we immediately obtain the next proposition.

Proposition 5.2. Let ϕ1, ϕ2 ∈ L2(Rd) and 1 ≤ p ≤ ∞.

1. If T ∈ T p, then Bϕ1,ϕ2T ∈ Lp(R2d) with ‖Bϕ1,ϕ2T‖Lp ≤ ‖T‖T p‖ϕ1‖L2‖ϕ2‖L2.

2. If a ∈ Lp(R2d), then Aϕ1,ϕ2
a ∈ T p with ‖Aϕ1,ϕ2

a ‖T p ≤ ‖a‖Lp‖ϕ1‖L2‖ϕ2‖L2.

The boundedness results in this section for Berezin transforms and localization
operators were all shown, along with others, in [3] and [13]. The novel result in
this section is therefore that the Berezin transform and localization operators may
be considered as special cases of convolutions, which in section 7 will be used to
apply theorems from Werner’s theory of convolutions to Berezin transforms and
localization operators.
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5.1 Adjoints

There is one more fundamental connection between the different convolutions that
we will need in order to prove the theorems in section 7. In order to explain this,
we will extend the notation for the Berezin transforms and localization operators
to the case where the windows ϕ1, ϕ2 are replaced by an operator S ∈ T 1. From
theorem 5.1 the obvious way of doing this is to define AS and BS by

ASf = f ∗ S BST = T ∗ Š∗,

for a function f and an operator T . The operators AS and BS are bounded on
different domains, such as Lp-spaces and Schatten p-classes depending on the nature
of S, as we have seen in the previous sections. If we choose the domains of AS and
BS in a compatible way, then they are adjoints of each other. This was noted by
Werner in [46], but is also contained in [3], although with a very different formalism.

Theorem 5.3. Fix S ∈ T 1 and 1 ≤ p <∞. Let q be the conjugate exponent of p
determined by 1

p
+ 1

q
= 1. The Banach space adjoint of AS : Lp(R2d)→ T p is given

by
(AS)∗ = BS,

where BS : T q → Lq(R2d).
Similarly, the adjoint of BS : T p → Lp(R2d) is given by

(BS)∗ = AS,

where AS : Lq(R2d)→ T q.

Proof. If we let the bracket denote duality, then the adjoint of AS is determined by

〈(AS)∗T, f〉 = 〈T,ASf〉

for any T ∈ T q and f ∈ Lp(R2d). First assume p < ∞. Since AS and BS are
convolution operator in disguise, we did in fact check in section 4.1 that

〈BST, f〉 = 〈T,ASf〉

is true whenever T ∈ T 1 and f ∈ L1 ∩ L∞. The general statement then follows,
since T 1 is a dense subspace of T q and L1 ∩ L∞ is a dense subspace of Lp. The
case p =∞ holds by definition 4.2. The proof that (BS)∗ = AS uses exactly the
same argument.
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6 Fourier transforms
We will now introduce a Fourier transform for trace class operators. In the
terminology of Werner [28,29,46] this is the Fourier-Weyl transform, but we will
follow Folland [20] and call it the Fourier-Wigner transform.

Definition 6.1. Let S ∈ T 1. We define the Fourier-Wigner transform FWS of S
to be the function given by

FWS(z) = e−πix·ωtr(π(−z)S)

for z ∈ R2d.

Various versions of the operator FW have been studied in many different settings
both in the physics and the mathematics literature – it may in fact be traced
all the way back to a fundamental paper in quantum mechanics by Wigner from
1932 [49]. The crucial insight of Werner’s paper [46] is that FW might rightly be
called a Fourier transform, and that the naturally associated convolution operations
are the convolutions discussed in section 4. Much of this section will be used to
make these claims precise, by showing that FW has several properties analogous to
known properties of the Fourier transform of functions. We start by showing that
in the simplest case the Fourier-Wigner transform of an operator recovers familiar
concepts from time-frequency analysis.

Lemma 6.1. Let S = ϕ2 ⊗ ϕ1 for two functions ϕ1, ϕ2 ∈ L2(Rd). The Fourier-
Wigner transform of S is given by

FW (S)(z) = A(ϕ2, ϕ1)(z),

where A(ϕ2, ϕ1)(z) is the cross-ambiguity function.

Proof. Let {ψn}n∈N be an orthonormal basis for L2(Rd). A calculation using
Parseval’s identity shows that

FW (ϕ2 ⊗ ϕ1)(z) = e−πix·ωtr(π(−z)ϕ2 ⊗ ϕ1)

= e−πix·ω
∑
n∈N

〈(π(−z)ϕ2 ⊗ ϕ1)ψn, ψn〉

= e−πix·ω
∑
n∈N

〈π(−z)ϕ2, ψn〉〈ψn, ϕ1〉

= e−πix·ω〈π(−z)ϕ2, ϕ1〉
= eπix·ωVϕ1ϕ2(z),

where the last equality follows from the formula for π(z)∗ given in lemma 3.1 and
the definition of the short-time Fourier transform.
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At some later point we are going to need an example of an operator T such
that FWT (z) 6= 0 for all z ∈ R2d. We therefore include the following example.

Example 6.1. Consider the Gaussian ϕ(t) = 2d/4e−πt·t for t ∈ Rd and the operator
S = ϕ⊗ ϕ. We know that FWS = eπix·ωVϕϕ(z), and if we write out the definition
of Vϕϕ(z), we find that

FW (ϕ⊗ ϕ)(z) = eπix·ω
∫
Rd
e−2πiω·tϕ(t+ x)ϕ(t) dt. (5)

Calculating the integral in equation (5) gives that

FW (ϕ⊗ ϕ)(z) = e2πix·ωe−
1
2
πz·z.

In particular we note that the Fourier-Wigner transform has no zeros.

Next we will show that the Fourier-Wigner transform can be extended to a
unitary operator, just as the regular Fourier transform. By doing so we will also
find that the inverse of the Fourier-Wigner transform is the integrated Schrödinger
representation.

Proposition 6.2. The Fourier-Wigner transform extends to a unitary operator
FW : T 2 → L2(R2d). This extension is the inverse operator of the integrated
Schrödinger representation ρ, and satisfies

FW (ST ) = FW (S)\FW (T )

for S, T ∈ T 2.

Proof. We start by showing that the Fourier-Wigner transform can be extended to
the Hilbert-Schmidt operators T 2. By the singular value decomposition, elements
of the form S =

∑N
n=1 snψn ⊗ φn are dense in T 2, where {ψn}Nn=1 and {φn}Nn=1

are orthonormal sets in L2(Rd), sn > 0 are the singular values of S and N ∈ N.
From the previous lemma FW (S) =

∑N
n=1 e

πix·ωsnVφnψn, and a computation using
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Moyal’s identity shows that

‖FW (S)‖2
L2 = 〈

N∑
n=1

sne
πix·ωVφnψn,

N∑
m=1

sme
πix·ωVφmψm〉L2

=
N∑

m,n=1

smsn〈Vφnψn, Vφmψm〉L2

=
N∑

m,n=1

smsn〈ψn, ψm〉L2〈φm, φn〉L2

=
N∑
n=1

s2
n

= ‖S‖2
T 2 .

In words, the Fourier-Wigner transform is an isometry on a dense subspace of T 2

into L2(R2d), and therefore extends to an isometry FW : T 2 → L2(R2d) [40, Thm.
1.7]. To show that the extension is the inverse of ρ, we consider T = ϕ2 ⊗ ϕ1 for
ϕ1, ϕ2 ∈ L2(Rd). We have already shown that FW (T )(z) = eπix·ωVϕ1ϕ2. If we let
ψ, φ ∈ L2(Rd), we may use the weak definition of the vector-valued integral defining
ρ to calculate

〈ρ(eπix·ωVϕ1ϕ2)ψ, φ〉 =

∫∫
R2d

Vϕ1ϕ2〈π(z)ψ, φ〉 dz

=

∫∫
R2d

Vϕ1ϕ2(z)Vψφ(z) dz

= 〈ϕ2, φ〉〈ψ, ϕ1〉,

where the last equality is Moyal’s identity. The last expression clearly equals
〈Tf, g〉. If we denote the identity operator on T 2 by IT 2 , we have shown that
ρFWT = IT 2T . By linearity this equality of operators must hold on the dense
subspace of T 2 spanned by such operators T , and therefore ρFW = IT 2 by continuity.
To show that FW is a two-sided inverse of ρ, we note that ρ has some two-sided
inverse ρ−1, since ρ is unitary. If we apply this inverse to the equation ρFW = IT 2 ,
we find that FW = ρ−1. Therefore FW is the inverse operator of the integrated
Schrödinger representation.

The equation FW (ST ) = FW (S)\FW (T ) may now be deduced from two known
properties of ρ, namely ρ(f\g) = ρ(f)ρ(g) and the fact that it is injective. Since ρ
is the inverse of FW , ρFW (ST ) = ST . But we also know that ρ (FW (S)\FW (T )) =
ρFW (S)ρFW (T ) = ST . The equality now follows since ρ is injective.
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In other words, FW (S) is the twisted Weyl symbol of S. As a simple consequence,
we obtain a formula for the trace of trace class operators in terms of their Weyl
symbol. In section 4 we informally viewed the trace of an operator as an analogue of
the integral of a function, and the next formula makes this analogue more precise.

Corollary 6.2.1. Let f ∈ L1(R2d) be a function such that the Weyl transform Lf
is a trace class operator. The trace of Lf is given by

tr(Lf ) =

∫∫
R2d

f(z) dz.

Proof. On the one hand, the previous proposition shows that the FW (Lf) is the
twisted Weyl symbol of Lf , which we know is Fσf from section 2.7.2. On the other
hand, FW (Lf )(z) = e−πix·ωtr(π(−z)Lf ) from the definition of the Fourier-Wigner
transform. Therefore Fσf(z) = e−πix·ωtr(π(−z)Lf), and evaluating this at z = 0
gives the desired equality.

Now that we have extended the Fourier-Wigner transform to the Hilbert-Schmidt
operators, we may follow Werner [46] and use a simple interpolation argument
to prove the analogue of the well-known Hausdorff-Young inequality for Fourier
transforms [39, Thm. IX.8].

Proposition 6.3 (Hausdorff-Young inequality). Let 1 ≤ p ≤ 2 and let q be the
conjugate exponent determined by 1

p
+ 1

q
= 1. If S ∈ T p, then FW (S) ∈ Lq(R2d)

with norm estimate
‖FW (S)‖Lq ≤ ‖S‖T p .

Proof. We will use complex interpolation, and therefore start with the endpoints
p = 1 and p = 2. The result for p = 2 follows from proposition 6.2, where we even
have equality of norms. For p = 1, the result follows from part (5) of proposition
2.5, since this proposition gives that

|FWS(z)| = |tr(π(−z)S)|
≤ ‖π(−z)‖B(L2)‖S‖T 1 = ‖S‖T 1 ,

so ‖FWS‖L∞ ≤ ‖S‖T 1 . For the interpolation argument, theorem 2.24 gives that

(T 1, T 2)θ = T p (L∞, L2)θ = Lq,

where 1
p

= 1− θ
2
and 1

q
= θ

2
for θ ∈ (0, 1). Thus the proposition follows from the

machinery of complex interpolation.
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For S = ψ ⊗ φ with ψ, φ ∈ L2(Rd), the previous proposition gives that∫∫
R2d

|Vφψ|q(z) dz ≤ ‖ψ‖qL2‖φ‖qL2

for 2 ≤ q <∞ and p the conjugate exponent of q, since ‖ψ ⊗ φ‖T p = ‖ψ‖L2‖φ‖L2 .
This is a slightly weaker version of Lieb’s uncertainty principle from time-frequency
analysis [23, Thm. 3.3.2], which states that∫∫

R2d

|Vφψ|q(z) dz ≤
(

2

q

)d
‖ψ‖qL2‖φ‖qL2 .

On the other hand, if we take Lieb’s uncertainty principle as our starting point
and expand S =

∑
m∈N smψm⊗ φm using the singular value decomposition, we find

that

‖FW (S)‖Lq = lim
n→∞

∥∥∥∥∥ FW
(

n∑
m=1

smψm ⊗ φm

)∥∥∥∥∥
Lq

= lim
n→∞

‖
n∑

m=1

smA(ψm, φm)‖Lq

≤ lim
n→∞

n∑
m=1

sm‖A(ψm, φm)‖Lq

≤ lim
n→∞

n∑
m=1

sm

(
2

q

)d/q
‖ψm‖L2‖φm‖L2

=

(
2

q

)d/q ∞∑
m=1

sm =

(
2

q

)d/q
‖S‖T 1 .

The first step in this calculation uses proposition 6.3, which states that the Fourier-
Wigner transform is continuous from T p to Lq(R2d). We also use Lieb’s uncertainty
principle to bound ‖A(ψm, φm)‖Lq . By these calculations we obtain an improved
version of the Hausdorff-Young inequality

‖FW (S)‖Lq ≤
(

2

q

)d/q
‖S‖T p ,

which includes Lieb’s uncertainty principle as a special case. This version is sharp
as we have equality in Lieb’s uncertainty principle for Gaussians [23, p. 51].
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6.1 Convolutions and Fourier transforms

Having introduced both Fourier transforms and convolutions of functions and
operators, one would naturally hope that the well-known relationship between
these two operations on functions also holds for operators. This is true, but we will
need to use the symplectic Fourier transform Fσ on functions. A first clue to this
effect is the appearance of the symplectic form σ in part (3) of lemma 3.2, which
will turn out to be the key fact linking the symplectic Fourier transform to the
Fourier-Wigner transform and convolutions.

Proposition 6.4. Let f, g ∈ L1(R2d) and S, T ∈ T 1.

1. Fσ(f ∗ g) = Fσ(f)Fσ(g).

2. Fσ(S ∗ T ) = FW (S)FW (T ).

3. FW (f ∗ S) = Fσ(f)FW (S).

Proof. 1. The case of the Fourier transform of functions is well known, but we
include a proof to show how the argument goes for the case of the symplectic
Fourier transform. Using Fubini’s theorem, which is applicable since the
functions are integrable, we find that

Fσ(f ∗ g)(z) =

∫∫
R2d

e−2πiσ(z,y)

∫∫
R2d

f(x)g(y − x) dx dy

=

∫∫
R2d

f(x)

∫∫
R2d

e−2πiσ(z,y)g(y − x) dy dx.

Introducing the variable y′ = y − x, the innermost integral becomes∫∫
R2d

e−2πiσ(z,y′+x)g(y′) dy′,

and by the bilinearity of σ we may write this as∫∫
R2d

e−2πiσ(z,x)e−2πiσ(z,y′)g(y′) dy′.

We then insert this back into our double integral, to find that

Fσ(f ∗ g)(z) =

∫∫
R2d

e−2πiσ(z,x)f(x)

∫∫
R2d

e−2πiσ(z,y′)g(y′) dy′ dx

= Fσ(f)Fσ(g).
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2. From the definitions we get that Fσ(S∗T )(z) =
∫∫

R2d tr
[
Sπ(z′)Ť π(z′)∗

]
e−2πiσ(z,z′) dz′.

Using part (3) of lemma 3.2 to get that e−2πiσ(z,z′)π(z′) = α−zπ(z′), the inte-
grand may be written in an alternative form that will allow us to use lemma
4.2 :

tr
[
Sπ(z′)Ť π(z)∗

]
e−2πiσ(z,z′) = tr

[
Se−2πiσ(z,z′)π(z′)Ť π(z′)∗

]
= tr

[
Sπ(−z)π(z′)π(−z)∗Ť π(z′)∗

]
.

Lemma 4.2 then gives that

Fσ(S ∗ T )(z) =

∫∫
R2d

tr
[
Sπ(−z)αz′(π(−z)∗Ť )

]
dz′

= tr(Sπ(−z))tr(π(−z)∗Ť )

= tr(Sπ(−z))tr(e−2πix·ωπ(z)Ť )

= tr(e−πix·ωSπ(−z))tr(e−πix·ωπ(−z)T )

= FW (S)(z)FW (T )(z),

where we have used that tr(π(z)Ť ) = tr(π(z)PTP ) = tr(Pπ(z)PT ) =
tr(π(−z)T ) from part (5) of lemma 3.2.

3. By proposition 2.9 we may take the trace inside the integral:

FW (f ∗ S)(z) = e−πix·ωtr

(
π(−z)

∫∫
R2d

f(z′)π(z′)Sπ(z′)∗ dz′
)

= e−πix·ω
∫∫

R2d

f(z′)tr [π(−z)π(z′)Sπ(z′)∗] dz′.

Next we will manipulate the integrand by using part (3) of lemma 3.2 as before.
However, we first note that since π(z′)∗ = π(−z′)e−2πix·ω, a straightforward
calculation yields that π(z′)∗π(−z)π(z′) = π(−z′)π(−z)π(−z′)∗. With this
in mind, we find that

tr [π(−z)π(z′)Sπ(z′)∗] = tr [π(z′)∗π(−z)π(z′)S]

= tr [π(−z′)π(−z)π(−z′)∗S]

= e−2πiσ(z,z′)tr(π(−z)S).

Inserting this expression into our calculation concludes the proof, since

FW (f ∗ S)(z) = e−πix·ω
∫∫

R2d

f(z′)e2πiσ(z,z′)tr(π(−z)S) dz′

= e−πix·ωtr(π(−z)S)

∫∫
R2d

f(z′)e−2πiσ(z,z′) dz′

= Fσ(f)FW (S).
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Remark. One might be tempted to remove the phase factor from the definition of
the Fourier-Wigner transform. However, another phase factor would then appear
in part (2) of this proposition.

This result is not merely aesthetically pleasing, but will be used in several proofs
in the rest of this text. As a first example we obtain the representation of f ∗ T as
a pseudodifferential operator.

Corollary 6.4.1. Let f ∈ L1(R2d) and S ∈ T 1. The twisted Weyl symbol of f ∗ S
is the function

Fσ(f)FW (S)

In particular, if ϕ1, ϕ2 ∈ L2(Rd), the Weyl symbol of the localization operator
Aϕ1,ϕ2

f is the function
σ = f ∗W (ϕ2, ϕ1).

Proof. We know from proposition 6.2 that FW is the inverse operator to the
integrated Schrödinger representation, and thus returns the twisted Weyl symbol
of an operator. From proposition 6.4 we find that FW (f ∗ S) = Fσ(f)FW (S). In
particular, the twisted Weyl symbol of Aϕ1,ϕ2

f is Fσ(f)A(ϕ2, ϕ1) by lemma 6.1. The
Weyl symbol is the symplectic Fourier transform of the twisted Weyl symbol, thus
given by Fσ [Fσ(f)A(ϕ2, ϕ1)] = f ∗W (ϕ2, ϕ1).

Furthermore, this gives a way to calculate the composition of two operators
of the form f ∗ S and g ∗ T : from section 2.7.2 the twisted Weyl symbol of the
composition is the twisted convolution of the symbols of f ∗ S and g ∗ T .

We will now prove a proposition by Werner [46] which generalizes the Riemann-
Lebesgue lemma to the Fourier-Wigner transform.

Proposition 6.5 (Riemann-Lebesgue lemma). If S ∈ T 1, the Fourier-Wigner
transform FW (S) is continuous and vanishes at infinity, i.e. lim

|z|→∞
|FW (z)| = 0.

Proof. Vanishes at infinity: Proposition 6.4 gives that Fσ(S ∗ S) = FW (S)2. By
the usual Riemann-Lebesgue lemma, the left side vanishes at infinity, which clearly
implies that FW (S) vanishes at infinity.

Continuity: Assume that zn is a sequence converging to some z in R2d. We
need to show that FW (S)(zn)→ FW (S)(z). Let {ψm}m∈N be an orthonormal basis
for L2(Rd). Writing out the definition of the trace, we have that

lim
n→∞

FW (S)(zn) = lim
n→∞

∑
m∈N

〈e−πixn·ωnπ(zn)Sψm, ψm〉

=
∑
m∈N

lim
n→∞
〈e−πixn·ωnπ(zn)Sψm, ψm〉,
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where we have assumed that the limit can be taken inside the sum for now. By the
strong continuity of z 7→ e−πix·ωπ(z), which follows from a trivial addition to the
proof of lemma 3.1, we get that lim

n→∞
e−πixn·ωnπ(zn)Sψm = e−πix·ωπ(z)Sψm. Further-

more, the Cauchy-Schwarz inequality gives that the inner product is continuous in
both coordinates, so lim

n→∞
〈e−πixn·ωnπ(zn)Sψm, ψm〉 = 〈 lim

n→∞
e−πixn·ωnπ(zn)Sψm, ψm〉 =

〈e−πix·ωπ(z)Sψm, ψm〉. Inserting this back into the calculation gives the desired
result.

The proof that we can take the limit inside the sum follows from the argument
we used when proving part (3) of proposition 3.3.

6.2 The Arveson spectrum

For a function f ∈ L1(R2d) one often defines the spectrum of f to be the closure of
{z ∈ R2d : Ff(z) 6= 0}. Similarly we could use the Fourier-Wigner transform to
define the spectrum of S ∈ T 1 to be the closure of {z ∈ R2d : FWS(z) 6= 0}. There
is however another notion of spectrum for elements of a von Neumann algebra, such
as B(L2(Rd)), due to Arveson [1]. We wish to show that the Arveson spectrum of
S ∈ T 1 can be described using the set of zeros of the Fourier-Wigner transform of
S in a natural way.

We first cite Arveson’s definition of the spectrum. Let X be a von Neumann
algebra with an automorphism group {Uz}z∈R2d on X, and let x ∈ X. Arveson
[2] defined the spectrum spU(x) to be the spectrum of the family of functions
{z 7→ ρ(Uzx) : ρ ∈ X∗}, where X∗ is the predual of X and we consider X∗ as a
subspace of the dual space of X.

In our case U = α and X = B(L2(Rd)), and the predual of X is T 1, where
T ∈ T 1 acts on S ∈ B(L2(Rd)) by S 7→ tr(TS). By the spectrum of a function
in f ∈ L1(R2d) we will mean the closure of {z ∈ R2d : Fσf(z) 6= 0}, and the
spectrum of a family of functions {fi}i∈I in L1(R2d) is then the closure of {z ∈
R2d : Fσfi(z) 6= 0 for some i ∈ I}.

Proposition 6.6. Let S ∈ T 1. The spectrum spα(S) is the closure of the comple-
ment of {z ∈ R2d : FWS(−z) = 0}.

Proof. By definition, spα(S) is the spectrum of the functions tr(TαzS) = T ∗Š(z) for
T ∈ T 1. By lemma 4.2 these functions belong to L1(R2d), and hence their spectrum
is the closure of the complement of the set Z := {z ∈ R2d : Fσ(T ∗Š) = 0 ∀ T ∈ T 1}.
By proposition 6.4, Fσ(T ∗ Š)(z) = FW (T )(z)FW (Š)(z) = FW (T )(z)FW (S)(−z),
hence {z ∈ R2d : FWS(−z) = 0} is a subset of Z. To see that Z = {z ∈ R2d :
FWS(−z) = 0}, note that we have constructed T0 ∈ T 1 with FW (T0)(z) 6= 0 for
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all z ∈ R2d in example 6.1. Hence FW (−z)(S) 6= 0 implies that Fσ(T0 ∗ Š)(z) =
FW (T0)(z)FW (S)(−z) 6= 0.

Note that the minus sign in the previous proposition would disappear if we
followed Werner [46] and defined FWS(z) = e−πix·ωtr(π(z)S). The difference
between our definition and Werner’s is little more than cosmetic; we have chosen
our convention to get that FW (S) is the twisted Weyl symbol of S when S ∈ T 2.

7 A generalization of Wiener’s Tauberian theorem
The previous section showed that the Fourier-Wigner transform shares several
properties with the Fourier transform of functions. The goal of this section is to
show that the Wiener’s famous Tauberian theorem for functions can be generalized
to operators, as was first done by Werner in [46]. We will then apply this result to
the rank-one case, which both improves the results of Bayer and Gröchenig [3] and
gives these results a conceptual framework using the Fourier-Wigner transform.

Wiener’s Tauberian theorem was formulated and proved in a famous 1932
paper by Wiener [48], and characterizes the functions g ∈ L1(R2d) whose translates
{Tzg : z ∈ R2d} span a dense subspace of L1(Rd) in terms of their Fourier transforms.
In order to generalize this theorem to operators, we will first need to fix some
terminology.

Definition 7.1. Let 1 ≤ p < ∞. We say that g ∈ Lp(R2d) is p-regular if the
translates {Tzg : z ∈ R2d} span a norm dense subspace of Lp(R2d). Similarly, we
say that S ∈ T p is p-regular if the translates {αzS : z ∈ R2d} span a norm dense
subspace of T p. We will often refer to 1-regularity as simply regularity.

If g ∈ L∞(R2d) we say that g is ∞-regular if the translates {Tzg : z ∈ R2d}
span a weak* dense subspace of L∞(R2d). We say that S ∈ B(L2(Rd)) is∞-regular
if the translates {αzS : z ∈ R2d} span a norm dense subspace of K(L2(Rd)).

Remark. 1. In section 2.3, we saw that ‖ · ‖B(L2) ≤ ‖ · ‖T q ≤ ‖ · ‖T p ≤ ‖ · ‖T 1 for
1 ≤ p ≤ q < ∞, and also that T p is a dense subspace of T q. Thus we get
that p-regularity implies q-regularity for an operator S if p ≤ q. This is also
true for q =∞, since any Schatten p-class is norm dense in K(L2(Rd)).

2. An equivalent definition for an operator S to be ∞-regular is that the
translates of S span a weak* dense subspace of B(L2(Rd)) [30]. We will use
both of these formulations.

We are now ready to state Wiener’s theorem using our newly introduced
terminology. The first two of these equivalences were proved already in [48] by
Wiener, the last one appears for instance as theorem 2.3 in [16].
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Theorem 7.1 (Wiener’s Tauberian theorem).

1. f ∈ L1(R2d) is regular ⇐⇒ the set {z ∈ R2d : Fσf(z) = 0} is empty.

2. f ∈ L2(R2d) is 2-regular ⇐⇒ the set {z ∈ R2d : Fσf(z) = 0} has Lebesgue
measure zero.

3. f ∈ L∞(R2d) is ∞-regular ⇐⇒ the set {z ∈ R2d : Fσf(z) = 0} has dense
complement.

Remark. The theorem is usually formulated using the regular Fourier transform,
but as we have discussed Fσf(z) 6= 0 for all z ∈ R2d is equivalent to the same
statement for the regular Fourier transform.

For 1 < p < 2, Lev and Olevskii [34] have shown the existence of two functions in
L1(R) with the same set of zeros for the Fourier transform, but where one function
is p-regular and the other is not. Wiener’s Tauberian theorem can therefore not be
extended in an obvious way to all values of 1 ≤ p ≤ ∞.

The next theorem consists of propositions 1,2 and 3 in [29], and we mainly
follow the proof given in that paper. It contains many equivalent statements of
p-regularity for an operator, but none concerning the Fourier-Wigner transform
as we would have expected in a generalization of theorem 7.1. The reason for
this is that such a result is not known to exist for p 6= 1, 2,∞. We therefore
state this general result for all 1 ≤ p ≤ ∞ first, and then extend it to include the
Fourier-Wigner transform for p = 1, 2,∞ in theorem 7.3.

Theorem 7.2. Let S ∈ T 1, 1 ≤ p ≤ ∞ and let q be the conjugate exponent of p
determined by 1

p
+ 1

q
= 1. The following are equivalent:

1. S is p-regular.

2. If f ∈ Lq(R2d) and f ∗ S = 0, then f = 0.

3. T p ∗ S is dense in Lp(R2d).

4. If T ∈ T q and T ∗ S = 0, then T = 0.

5. Lp(R2d) ∗ S is dense in T p.

6. S ∗ S is p-regular.

7. For any regular T0 ∈ T 1, T0 ∗ S is p-regular.

The density in points (3) and (5) is in the p-norm for p <∞, and weak∗ density
for p =∞.

For the case p =∞ we may add two further equivalent statements to the list:
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(i) K(L2(Rd)) ∗ S is dense in C0(R2d) in the ‖ · ‖L∞ norm.

(ii) C0(R2d) ∗ S is dense in K(L2(Rd)) in the operator norm ‖ · ‖B(L2).

Finally, there exists a p-regular operator S for any 1 ≤ p ≤ ∞.

Proof. We begin by considering the last statement, namely the existence of a
p-regular operator. From the remark following definition 7.1 it is sufficient to find a
regular operator S ∈ T 1. Now consider the Gaussian ϕ from example 6.1; we will
prove that S = ϕ⊗ ϕ satisfies part (6) of the theorem, so when the proof of the
theorem is complete we know that it is in fact regular. The reason for starting with
this is that we will need an operator satisfying (6) during the proof. Proposition
6.4 gives that Fσ(S ∗ S) = FW (S)FW (S). By example 6.1, FW (S) has no zeros,
thus the same is true for Fσ(S ∗ S). The classical Tauberian theorem of Wiener
then states that S ∗ S is regular.

(2) ⇐⇒ (3): First assume that p < ∞. In the notation of section 5.1,
statement (3) says that BŠ∗ : T p → Lp(R2d) has dense range. From theorem 5.3 we
know that the Banach space adjoint of BŠ∗ is AŠ∗ , and part (1) of proposition 2.25
states that the range of BŠ∗ is dense if and only if AŠ∗ is injective. Furthermore,
the injectivity of AŠ∗ is equivalent to the injectivity of AS, since f ∗ Š∗ = 0 implies
that ((f ∗ Š∗)ˇ)∗ = f̌ ∗ ∗ S = 0 by lemma 4.7. This proves the equivalence.

For p =∞ we need to use part of (2) of proposition 2.25, and that (AS)∗ = BS
by theorem 5.3. Otherwise, the proof is the same.

(4) ⇐⇒ (5): Follows from the same line of reasoning as above, with the roles
of A and B switched. This is permissible by theorem 5.3, since B and A appear in
a symmetric way in the theorem.

(2) =⇒ (4): Assume that we have T ∈ T q such that T ∗ S = 0. Taking the
convolution with an arbitrary A ∈ T 1 from the left on both sides of this equality,
we find by associativity that (A ∗ T ) ∗ S = 0. But A ∗ T ∈ Lq(R2d), so since we are
assuming (2) we get that A ∗ T = 0 for any A ∈ T 1. We will now use this to show
that T = 0.

As we have remarked earlier, the expression A∗T (z) = tr(Ǎα−zT ) is valid, even
for q =∞. If we let z = 0, we have that A ∗ T (0) = tr(ǍT ) = 0 for any A ∈ T 1.
If we consider T as an element of the dual space (T 1)∗ = B(L2(Rd)), which is
possible since T q ⊂ B(L2(Rd)), this says that 〈T, Ǎ∗〉 = 0 for any A ∈ T 1, where
〈·, ·〉 is a duality bracket. This is clearly equivalent to 〈T,A〉 = 0 for any A ∈ T 1

since ((Ǎ∗)ˇ)∗ = A, and this proves that T = 0.
(1) ⇐⇒ (4): For p < ∞, we will use that T q is the dual space of T p. A

subspace of a Banach space such as T p is dense if and only if it separates points of
the dual space. In particular, the subspace spanned by {αzS : z ∈ R2d} is dense
in T p if and only if 〈T, αzS〉 = 0 for every z ∈ R2d implies that T = 0, where
the bracket denotes duality and T ∈ T q. We have therefore shown that (1) is
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equivalent to the statement that 〈T, αzS〉 = 0 for every z ∈ R2d implies that T = 0.
Since T = 0 exactly when Ť ∗ = 0, we may equivalently phrase this condition as
〈Ť ∗, αzS〉 = 0 for every z ∈ R2d implies that T = 0.

It remains to show that this last statement is equivalent to (4), which may be
achieved by showing that T ∗ S = 0 is equivalent to 〈Ť ∗, αzS〉 = 0 for any z ∈ R2d.
By definition T ∗ S(z) = tr(Ťα−zS), which we may write in terms of the duality
bracket as T ∗ S(z) = 〈Ť ∗, α−zS〉. Clearly the left side is zero for all z ∈ R2d if and
only if the right side is, which is what we wanted to prove.

For p =∞ the same argument works, now using the fact that T 1 is the dual
space of K(L2(Rd)).

(6) =⇒ (3): This is a simple consequence of part (3) of lemma 4.7, which states
that Tz(S ∗ S) = αz(S) ∗ S. Therefore (6) gives that the set {αz(S) ∗ S : z ∈ R2d}
is dense in Lp(R2d). However, αz(S) ∈ T p for any z ∈ R2d, so the density of
{αz(S) ∗ S : z ∈ R2d} in particular implies the density of T p ∗ S.

(7) =⇒ (3): Follows from an argument similar to the preceding one. Again
Tz(T0 ∗ S) = αz(T0) ∗ S, and since T0 ∗ S is assumed to be p-regular, the set
{αz(T0) ∗ S : z ∈ R2d} is dense in Lp(R2d). But {αz(T0) : z ∈ R2d} ⊂ T 1 ⊂ T p,
which proves the statement.

(4) =⇒ (2): We start the proof similarly to the reverse implication. Assume
that f ∗S = 0 for f ∈ Lq(R2d); we want to show that f = 0. Taking the convolution
with an arbitrary S ′ ∈ T 1 from the left and using associativity, (S ′ ∗ f) ∗ S = 0,
which by (4) implies that S ′ ∗ f = 0 for any S ′ ∈ T 1.

Unfortunately, there is no natural relation between f ∗ S ′ and duality as there
was when proving the reverse inclusion. Instead, we let T be the operator ϕ⊗ ϕ
discussed at the very start of the proof, where ϕ is the Gaussian from example 6.1.
We know that T satisfies (6) for p = 1, and we have shown that T then satisfies (3),
i.e. T ∗ T 1 is a dense subset of L1(R2d). Since f ∗ S ′ = S ′ ∗ f = 0 for any S ′ ∈ T 1,
we must also have (T ∗ S ′) ∗ f = 0 for any S ′ ∈ T 1. In other words, f ∗ g = 0 for g
in the dense subset T ∗ T 1 ⊂ L1(R2d). Since the convolutions are continuous in
both arguments, this shows that f ∗ L1(R2d) = 0 and therefore that f = 0.

(3) =⇒ (6): Assume first that p <∞. Pick an f ∈ Lp(R2d) and an ε > 0. We
need to approximate f in the Lp-norm by a finite linear combination of elements of
the form Tz(S ∗ S) = αz(S) ∗ S. By investigating the already proved implications,
we see that we have proved (3) =⇒ (2) =⇒ (4) =⇒ (1), which lets us assume
that the elements {αzS : z ∈ R2d} span a dense subset of T p.

Since (3) holds, we pick an operator T ∈ T p such that ‖T ∗ S − f‖Lp < ε
2
. As

we have shown that (1) holds, we then pick ci ∈ C and zi ∈ R2d for i = 1, 2, ..., n

59



such that ‖T −
∑n

i=1 ciαziS‖p <
ε

2‖S‖1 . An estimate now shows that

‖
n∑
i=1

ciαzi(S) ∗ S − f‖Lp ≤ ‖

(
n∑
i=1

ciαziS − T

)
∗ S‖Lp + ‖T ∗ S − f‖Lp

<
ε

2‖S‖T 1

‖S‖T 1 +
ε

2
= ε,

where we have used proposition 4.5 to estimate the norm of a convolution.
If p = ∞, the same basic idea applies. First approximate f by T ∗ S in the

weak* topology, then approximate T by a finite linear combination of translates of
S. We leave to the reader the trivial reformulation of the proof in terms of open
sets.

(3) =⇒ (7): Let T0 ∈ T 1 be regular; as noted before, T0 is also p-regular. The
key parts of the previous argument was to first use (3) to approximate f by T ∗ S
for some T ∈ T 1, and then use the p-regularity of S to approximate T by a finite
linear combination of translates of S. Exactly the same argument works in this
case, except that we need to approximate T with a finite linear combination of
translates of T0 instead of S. We leave the details to the reader.

(ii) =⇒ (i): Following [29] we start by showing that K(L2(Rd)) ∗ S0 is
dense in C0(R2d) for a regular S0. Let f ∈ C0(R2d) and ε > 0. Since L1(R2d)
has an approximate identity [21, Prop. 2.44], there is a g ∈ L1(R2d) such that
‖g ∗ f − f‖∞ < ε

2
. Since we are assuming that S0 is regular, we know by (3) that

there is a T ∈ T 1 with ‖S0 ∗ T − g‖1 <
ε

2‖f‖∞ . From proposition 4.6 the operator
T ∗ f is compact, and an estimate now shows that S0 ∗ (T ∗ f) approximates f :

‖S0 ∗ T ∗ f − f‖L∞ ≤ ‖S0 ∗ T ∗ f − g ∗ f‖L∞ + ‖g ∗ f − f‖L∞

< ‖S0 ∗ T − g‖L1‖f‖L∞ +
ε

2
< ε.

Armed with this knowledge we now prove that (ii) =⇒ (i) for any S ∈
T 1, so assume that C0(R2d) ∗ S is dense in K(L2(Rd)). We need to prove that
K(L2(Rd)) ∗ S is dense in C0(R2d). If S0 is some regular operator, then the set
S0 ∗ C0(R2d) ∗ S = {S0 ∗ f ∗ S : f ∈ C0(R2d)} is a subset of K(L2(Rd)) ∗ S, and
it will be enough to show that this smaller set is dense. Since we assume (ii) we
know that C0(R2d)∗S is dense in K(L2(Rd)). We also know that S0 ∗K(L2(Rd)) is
dense in C0(R2d) from the first part of the argument, and if we combine these two
density results with the continuity of the convolutions, we get that S0 ∗C0(R2d) ∗S
must be a dense subset of C0(R2d).

(i) =⇒ (ii): We will just show that (ii) holds for a regular operator S0. The
proof is then completed in the same way as (ii) =⇒ (i). Let T ∈ K(L2(Rd)) and
ε > 0; we will use three density results to find f ∈ C0(R2d) with ‖T−f∗S0‖B(L2) < ε.
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Firstly, we use that T is compact to find a finite rank operator A with ‖T−A‖B(L2) <
ε
3
. Secondly, since A is finite rank it is in particular trace class, so by (3) we may

find g ∈ L1(R2d) such that ‖A − g ∗ S0‖B(L2) <
ε
3
. Here we have used that

‖ · ‖B(L2) ≤ ‖ · ‖T 1 . Finally the continuous functions with compact support are
dense in L1, so we can pick f ∈ C0(R2d) such that ‖g − f‖L1 ≤ ε

3‖S0‖B(L2)
. We

claim that ‖T − S0 ∗ f‖B(L2) < ε, which would conclude the proof. By the triangle
inequality

‖T − S0 ∗ f‖B(L2) ≤ ‖T − A‖B(L2) + ‖A− S0 ∗ g‖B(L2) + ‖S0 ∗ g − S0 ∗ f‖B(L2)

<
ε

3
+
ε

3
+ ‖S0‖B(L2)‖f − g‖L1 < ε.

(4) ⇐⇒ (ii) for p =∞: This part follows from the same kind of argument as
(2) ⇐⇒ (3) by using proposition 2.25 with the Banach spaces K(L2(Rd)) and
C0(R2d). Similar to that argument we get that C0(R2d)∗S is dense in K(L2(Rd)) if
and only if the map T 7→ T ∗S is injective from T 1 to C0(R2d)∗. The first statement
is clearly (ii), and the last statement is almost (4) when p =∞, except that the
codomain is C0(R2d)∗ rather than L1(R2d). However, it should be clear that this is
of no importance when determining whether the mapping is injective since L1(R2d)
may be identified with a subset of C0(R2d)∗. We have therefore shown that (4)
⇐⇒ (ii) for p =∞, which concludes the proof.

The next theorem is our generalization of Wiener’s Tauberian theorem. The
result was proved by Werner for p = 1 already in [46] using the theory of convolutions
and Fourier-Wigner transforms of operators, whereas the p =∞ result was proved
more recently in [29]. We will follow a proof sketched in [29], emphasizing the
important role of convolutions in translating results from functions to operators. A
more direct proof of the last two parts may be found in the same paper.

Theorem 7.3. Let S ∈ T 1.

1. S is regular ⇐⇒ the set {z ∈ R2d : FWS(z) = 0} is empty.

2. S is 2-regular ⇐⇒ the set {z ∈ R2d : FWS(z) = 0} has Lebesgue measure
zero.

3. S is ∞-regular ⇐⇒ the set {z ∈ R2d : FWS(z) = 0} has dense complement.

Proof. Each part of the proof will use the corresponding part of theorem 7.1, and
use the equivalences of (1) and (6) in theorem 7.2 along with proposition 6.4.
We therefore only prove the first part – the others follow from the same line of
reasoning.

By theorem 7.2, S is regular if and only if S∗S is regular. The classical Tauberian
theorem of Wiener states that S ∗ S is regular if and only if Fσ(S ∗ S)(z) 6= 0
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for any z ∈ R2d. However, proposition 6.4 gives that Fσ(S ∗ S) = (FWS)2. Thus
Fσ(S ∗ S)(z) 6= 0 for any z ∈ R2d if and only if the same holds for FWS. If we now
follow this chain of equivalences from beginning to end, we observe that we have
proved the theorem.

When S is a pseudodifferential operator inM, theorem 7.3 takes a particularly
simple form.

Corollary 7.3.1. Let S ∈M be the operator on L2(Rd) with twisted Weyl symbol
f ∈M1(R2d).

1. S is regular ⇐⇒ the set {z ∈ R2d : f(z) = 0} is empty.

2. S is 2-regular ⇐⇒ the set {z ∈ R2d : f(z) = 0} has Lebesgue measure zero.

3. S is ∞-regular ⇐⇒ the set {z ∈ R2d : f(z) = 0} has dense complement.

Proof. We have shown that the Fourier-Wigner transform of a trace class operator
is the twisted Weyl symbol of the operator, so FW (S) = f .

By theorem 7.2, the subset L1(R2d) ∗ S is dense in T 1 for any regular operator
S. One might then naturally ask whether there exists some particularly nice
operator S such that L1(R2d) ∗ S = T 1. Unfortunately, this is not possible. As
a counterexample consider S. If there were a function f ∈ L1(R2d) such that
S = f ∗ S, we could apply FW to this equation to get that FW (S) = Fσ(f)FW (S).
Since S is regular, FW (S) has no zeros, so we can divide by it to get Fσf = 1,
which is impossible by the Riemann-Lebesgue lemma.

7.1 Tauberian theorems for localization operators

We now turn to reproving and generalizing the density results for localization
operators and Berezin transforms in [3]. Since both the localization operators and
Berezin transform may be expressed as a convolution, we can apply theorems 7.2
and 7.3 to these concepts. More precisely, we will pick S = ϕ2⊗ϕ1 for two windows
ϕ1, ϕ2 ∈ L2(Rd), and formulate theorems 7.2 and 7.3 using the terminology of the
Berezin transform and localization operators. We start by reformulating theorem
7.2.

Theorem 7.4. Fix two windows ϕ1, ϕ2 ∈ L2(Rd) for A and B, let 1 ≤ p ≤ ∞ and
let q be the conjugate exponent of p, i.e. 1

p
+ 1

q
= 1. The following are equivalent:

1. The operator ϕ2 ⊗ ϕ1 is p-regular.

2. A is injective on Lq(R2d).
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3. The set {BT : T ∈ T p} is dense in Lp(R2d).

4. B is injective on T q.

5. The set {Af : f ∈ Lp(R2d)} is dense in T p.

6. B(ϕ2 ⊗ ϕ1) is p-regular.

7. For any regular T0 ∈ T 1, BT is p-regular.

The density in points (1), (3) and (5) is in the p norm for p < ∞, and weak∗
density for p =∞.

Remark. When reformulation theorem 7.2, we have substituted T ∗ S with BT =
T ∗ Š∗, where S = ϕ2 ⊗ ϕ1. The easiest way of seeing that this is allowed is to
observe that part (2) with S is equivalent to part (2) with Š∗, as we did in fact
prove when proving (2) ⇐⇒ (3). Since theorem 7.2 consists of equivalences, we
may therefore switch between S and Š∗ as we please.

Even more interesting are the results that we obtain by combining part (5) of
theorem 7.4 with theorem 7.3.

Theorem 7.5. Fix two windows ϕ1, ϕ2 ∈ L2(Rd).

1. The set {Aϕ1,ϕ2

f : f ∈ L1(R2d)} is dense in T 1 ⇐⇒ the set {z ∈ R2d :
A(ϕ2, ϕ1)(z) = 0} is empty.

2. The set {Aϕ1,ϕ2

f : f ∈ L2(R2d)} is dense in T 2 ⇐⇒ the set {z ∈ R2d :
A(ϕ2, ϕ1)(z) = 0} has zero Lebesgue measure.

3. The set {Aϕ1,ϕ2

f : f ∈ L∞(R2d)} is weak* dense in B(L2(Rd)) ⇐⇒ the set
{z ∈ R2d : A(ϕ2, ϕ1)(z) = 0} has dense complement.

Proof. The density statements in this theorem are part (5) of theorem 7.4 for
p = 1, 2,∞, and therefore equivalent to S being p-regular. Furthermore, theorem
7.3 relates the condition that S is p-regular for these three values of p to the set of
zeros of FW (S) = A(ϕ2, ϕ1).

Remark. Of course, these statements are also equivalent to the other statements in
theorem 7.4 for p = 1, p = 2 and p =∞, respectively.

The equivalence for p = 2 was proved by Bayer and Gröchenig in [3] using
different methods. They do, however, also sketch an approach similar to ours,
where they reduce the statement to Wiener’s Tauberian theorem for p = 2. This
approach is based on Pool’s theorem: an operator lies in T 2 if and only if its Weyl
symbol lies in L2(R2d). There is no corresponding result for T p when p 6= 2, and the
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approach in [3] could therefore not give equivalences for p = 1,∞. Our approach,
on the other hand, does not use Pool’s theorem and is based on the equivalent
statements in Wiener’s Tauberian theorem, which is true for p = 1, 2,∞. It was
the theory of convolutions and Fourier-Wigner transforms introduced in [46] that
allowed us to obtain equivalence statements on the level of operators from Wiener’s
theorem, and as a consequence obtain theorem 7.5.

For p 6= 1, 2,∞ our approach does not yield equivalences. We may however
reprove the results in [3], since p-regularity implies p′-regularity for p ≤ p′.

Corollary 7.5.1. Fix two windows ϕ1, ϕ2 ∈ L2(Rd).

1. Assume 1 ≤ p < 2. If the set {z ∈ R2d : A(ϕ2, ϕ1)(z) = 0} is empty, then the
set {Aϕ1,ϕ2

f : f ∈ Lp(R2d)} is norm dense in T p.

2. Assume 2 ≤ p < ∞. If the set {z ∈ R2d : A(ϕ2, ϕ1)(z) = 0} has Lebesgue
measure zero, then the set {Aϕ1,ϕ2

f : f ∈ Lp(R2d)} is norm dense in T p.

Proof. If the set {z ∈ R2d : A(ϕ2, ϕ1)(z) = 0} is empty, then the operator S =
ϕ2 ⊗ ϕ1 is regular by theorem 7.5 and the following remark. As noted, this
implies that S is p-regular for 1 ≤ p < ∞. By theorem 7.4, this implies that
{Aϕ1,ϕ2

f : f ∈ Lp(R2d)} is dense in T p. Exactly the same argument works for
2 ≤ p <∞, using part (2) of theorem 7.5.

7.2 A Banach module perspective

Recall that the convolutions make T p into Banach modules over L1(R2d). We
will show how theorem 7.2 may be used to shed light on these Banach module
structures.

Proposition 7.6. 1. For 1 ≤ p <∞, the L1(R2d)-module T p is essential.

2. For 1 ≤ p ≤ ∞, the L1(R2d)-module T p is order-free.

Proof. 1. Let T0 ∈ T 1 be a regular operator, which exists by theorem 7.2. By
part (5) of that theorem, L1(R2d) ∗ T0 is dense in T 1. As we discussed in a
remark after definition 7.1, this implies that L1(R2d) ∗ T0 is dense in T p for
any p <∞. In particular this means that the essential submodule of T p is
all of T p, hence T p is an essential L1(R2d)-module.

2. Assume that S ∈ T p is such that f ∗S = 0 for every f ∈ L1(R2d). Let T0 ∈ T 1

to be a regular operator. Then L1(R2d) ∗ T0 is dense in T 1 by theorem 7.2.
By commutativity and associativity of convolutions, f ∗ T0 ∗ S = 0 for
any f ∈ L1(R2d), and since L1(R2d) ∗ T0 is dense in T 1 this implies by
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continuity of the convolution that T ∗ S = 0 for any T ∈ T 1. In particular
T ∗ S(0) = tr(T Š) = 0, which shows that S = 0 as an element of the dual
space B(L2(Rd)) of T 1, and hence S = 0.

For p <∞ the above result leads to an interesting and immediate application
of the Cohen-Hewitt factorization theorem.

Proposition 7.7. For 1 ≤ p <∞, any S ∈ T p can be written as f ∗ T for some
f ∈ L1(R2d) and T ∈ T p.

Since we have not shown that B(L2(Rd)) = T ∞ is an essential module, we can
not deduce a similar result for general bounded operators. However, sections 3 and
4 make it clear that B(L2(Rd)) is an L1(R2d)-module with shift α, and proposition
7.6 asserts that this Banach module is order-free. Hence proposition 2.22 gives a
characterization of the elements of B(L2(Rd)) where α is strongly continuous.

Proposition 7.8. The elements of B(L2(Rd)) where α is strongly continuous are
exactly the elements of the form f ∗ A for f ∈ L1(R2d) and A ∈ B(L2(Rd)).

The application of Banach module theory to Werner’s convolutions, in particular
propositions 7.7 and 7.8, appears to be new.

8 Convolutions and Tauberian theorems for mod-
ulation spaces

So far we have used the Lp-spaces as our function spaces when defining the
convolutions. Now we will seek to understand how the modulation spaces fit into
the convolution theory. As mentioned in section 2.5, the modulation space M1(R2d)
is a Banach algebra under convolutions. Furthermore, since M1(R2d) ⊂ L1(R2d)
with ‖f‖L1 ≤ ‖f‖M1 for f ∈M1(R2d), lemma 4.1 shows that we may define f ∗ T
for f ∈ M1(R2d) and T ∈ T 1. Unfortunately, the convolution of two trace class
operators will not necessarily be an element of M1(R2d), so we do not get the
symmetry that we saw in lemmas 4.1 and 4.2 for L1(R2d) and T 1. This leads
to a natural question: which operators will produce functions in M1(R2d) under
convolution with a trace class operator? It turns out that operators inM have
this property, which we now aim to prove. In order to do so we need the following
estimate, proved in the proof of corollary 4.3 in [13].

Lemma 8.1. If ξ, η ∈ M1(Rd) and ψ, φ ∈ L2(Rd), then Vξψ(z)Vηφ(z) ∈ M1(R2d)
with norm estimate

‖Vξψ(z)Vηφ(z)‖M1 ≤ C0‖ξ‖M1‖η‖M1‖ψ‖L2‖φ‖L2
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for some constant C0.

The main idea for proving theorems 8.2 and 8.3 is to use the proofs in [3] for
the localization operators and Berezin transform, and then write S ∈M using the
Wilson basis as in theorem 2.19 to get the result for any S ∈M.

Theorem 8.2. Let S ∈M be the trace class operator given on L2(Rd) by Sψ(s) =∫
Rd k(s, t)ψ(t) dt with k ∈M1(R2d). For T ∈ T 1, the function

T ∗ S(z) = tr(Tπ(z)Šπ(z)∗)

lies in M1(R2d) and ‖T ∗ S‖M1 ≤ C‖k‖M1‖T‖T 1 for some constant C independent
of S and T .

Proof. We will prove that tr(Tπ(z)Sπ(z)∗) lies in M1(Rd) with the same norm
estimate. The corresponding result with Š then follows since one may easily check
that the integral kernel of Š is ǩ and ‖ǩ‖M1 ≤ K‖k‖M1 for some constant K by
lemma 2.15.

As in theorem 2.19, let {wi}i∈N be a Wilson basis for L2(Rd), and define the
Wilson basis for L2(R2d) by Wij(x, y) = wi(x)wj(y). By theorem 2.19 and theorem
2.3 we may expand S and T as

S =
∑
i,j∈N

〈k,Wij〉wi ⊗ wj, T =
∑
n∈N

tnψn ⊗ φn,

where {tn}n∈N are the singular values of T and {ψn}n∈N and {φn}n∈N are orthonor-
mal sets in L2(Rd).

We will now calculate the convolution of the operators, and to calculate the
trace we will use an orthonormal basis {ek}k∈N which is obtained by extending the
orthonormal set {ψn}n∈N. A computation shows that

Tπ(z)Sπ(z)∗ek = Tπ(z)

[∑
i,j∈N

〈k,Wij〉〈π(z)∗ek, wj〉wi

]
=
∑
n∈N

∑
i,j∈N

tn〈k,Wij〉〈π(z)∗ek, wj〉〈π(z)wi, φn〉ψn

=
∑
i,j∈N

∑
n∈N

tn〈k,Wij〉Vwjek(z)Vwiφn(z)ψn.

Now, since {ek}k∈N extends {ψn}n∈N, the trace is given by

tr(Tπ(z)Sπ(z)∗) =
∑
k∈N

〈Tπ(z)Sπ(z)∗ek, ek〉

=
∑
i,j∈N

∑
n∈N

tn〈k,Wij〉Vwjψn(z)Vwiφn(z),
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by the previous computation. Recall from section 2.5.3 that ‖wi‖M1 ≤ C1 for some
constant C1. In addition, the sets {ψn}n∈N and {φn}n∈N are orthonormal, so lemma
8.1 implies that the product Vwjψn(z)Vwiφn(z) is a function in M1(R2d) with norm

‖Vwjψn(z)Vwiφn(z)‖M1 ≤ C2

for some constant C2.
If we now take the M1(R2d) norm of our expression for tr(Tπ(z)Sπ(z)∗), we

find that

‖tr(Tπ(z)Sπ(z)∗)‖M1 ≤
∑
i,j∈N

∑
n∈N

tn|〈k,Wij〉| ‖Vwjψn(z)Vwiφn(z)‖M1

≤ C2

∑
i,j∈N

|〈k,Wij〉|
∑
n∈N

tn

≤ C2K
′‖k‖M1‖T‖T 1 ,

where K ′ is the positive constant associated with the fact that the `1 norm on the
Wilson basis coefficients is an equivalent norm for M1(R2d), as discussed in section
2.5.3.

Remark. 1. If A ∈ B(L2(Rd)) and S ∈ M, then clearly A ∗ T ∈ M∞(R2d).
After all, proposition 4.5 shows that A ∗ S ∈ L∞(R2d), and we know that
L∞(Rd) ⊂M∞(Rd).

2. The theorem is not true for all S ∈ T 1. If we let S = T = ψ ⊗ ψ for
ψ ∈ L2(R), then the calculations in the proof show that tr(TαzS) = |Vψψ|2.
Benedetto and Pfander have constructed an example of a ψ ∈ L2(R) such
that |Vψψ|2 /∈M1(R2) [4, Remark 4.6].

3. A version of theorem 8.2 for T in other Schatten p-classes was proved in [3].
However, the proof uses that ‖σ‖M∞ ≤ ‖T‖B(L2), where σ is the Weyl symbol
of T as an operator T : M1(Rd)→ M∞(Rd). This inequality is not true in
general; in fact the opposite inequality is true by theorem 2.18. We therefore
settle for the special cases T 1 and B(L2(Rd)).

4. There are other reasons whyM is a natural class of operators. Any class of
pseudodifferential operators suitable for the theory of convolutions should
be closed under α, and hence by lemma 3.4 the associated class of symbols
should be closed under translation. We are therefore led to the classM, as
M1(Rd) is the smallest Banach space in L1(Rd) isometrically invariant under
Mω and Tx [25].
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Next, we would like to prove a similar result for convolutions of functions in
different Lp-spaces with S ∈M. Because of the connection between localization
operators and convolutions discussed in section 5, we will be able to prove this
result using an argument from Cordero and Gröchenig’s paper [13]. More precisely,
we will translate the statement into a statement on Weyl transforms by using the
convolution relations in proposition 2.14. The statement then follows from the
results on the Weyl transform in theorem 2.18.

Theorem 8.3. Let 1 ≤ p ≤ ∞, k ∈ M1(R2d) and let S ∈ M be the trace class
operator given on L2(Rd) by Sψ(s) =

∫
Rd k(s, t)ψ(t) dt. If f ∈ Mp,∞(R2d), the

function f ∗ S lies in T p and ‖f ∗ S‖T p ≤ C‖k‖M1‖f‖Mp,∞ for some constant C
independent of S and f .

Proof. First assume that S = ϕ2 ⊗ ϕ1 for ϕ1, ϕ2 ∈ M1(R2d) with ‖ϕ1‖M1 =
‖ϕ2‖M1 = 1.

1. 1 ≤ p ≤ 2. By corollary 6.4.1, f ∗ S = Lσ for σ = f ∗ W (ϕ2, ϕ1). We
will estimate the M1,p(R2d)-norm of W (ϕ2, ϕ1) using lemma 2.17, so note
that ϕ2 ∈ Mp(Rd), since M1(Rd) ⊂ Mp(Rd). Lemma 2.17 then says that
W (ϕ2, ϕ1) ∈M1,p(R2d), with ‖W (ϕ2, ϕ1)‖M1,p ≤ C0‖ϕ2‖Mp‖ϕ1‖M1 .

Now the convolution relations in proposition 2.14 gives that σ ∈ Mp(R2d)
with

‖σ‖Mp ≤ C1‖f‖Mp,∞‖ϕ2‖Mp‖ϕ1‖M1

for some constant C1.

Now we can apply the relationship between the function space of the Weyl sym-
bol and the Schatten p-class of the Weyl transform given in theorem 2.18. This
theorem shows that f ∗ S ∈ T p, and ‖f ∗ S‖p ≤ C2‖f‖Mp,∞‖ϕ2‖M1‖ϕ1‖M1 =
C2‖f‖Mp,∞ for some constant C2, where we have used that ‖ϕ2‖Mp ≤
Cp‖ϕ2‖M1 for some constant Cp.

2. 2 ≤ p ≤ ∞. The exactly same argument may be used to reduce the statement
to the Weyl symbol of f ∗S. The only difference is that the proof is concluded
by part (2) of theorem 2.18 instead of part (1).

In order to extend the result to S = Ak for k ∈ M1(R2d), we use the Wilson
basis {wm}m∈N of L2(Rd) to write S =

∑
m,n∈N〈k,Wmn〉wm ⊗ wn, as is allowed by

theorem 2.19. Then

f ∗ S = f ∗
∑
m,n∈N

〈k,Wmn〉wm ⊗ wn

=
∑
m,n∈N

〈k,Wmn〉f ∗ (wm ⊗ wn) .
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Now take the T p norm of this expression to find that

‖f ∗ S‖T p ≤
∑
m,n∈N

|〈k,Wmn〉| · ‖f ∗ (wm ⊗ wn) ‖T p

≤ C2‖f‖Mp,∞

∑
m,n∈N

|〈k,Wmn〉|

≤ C‖f‖Mp,∞‖k‖M1 .

If ϕ1, ϕ2 ∈ M1(Rd), then ϕ2 ⊗ ϕ1 is the integral operator Ak with kernel
k(z) = ϕ2 ⊗ ϕ1(z), since we calculate when ψ ∈ L2(Rd) that

Ak(ψ) =

∫∫
R2d

ϕ2(x)ϕ1(y)ψ(y) dy

= ϕ2(x)

∫∫
R2d

ϕ1(y)ψ(y) dy

= 〈ψ, ϕ1〉ϕ2

= ϕ2 ⊗ ϕ1(ψ).

In particular, ϕ2 ⊗ ϕ1 ∈ M, and applying theorems 8.2 and 8.3 to the operator
ϕ2 ⊗ ϕ1 allows us to deduce the following boundedness results for localization
operators and Berezin transforms from [3].

Proposition 8.4. Let ϕ1, ϕ2 ∈M1(Rd) and 1 ≤ p ≤ ∞.

1. If T ∈ T 1, then BT ∈ M1(R2d) with ‖BT‖M1 ≤ C1‖T‖T 1‖ϕ1‖L2‖ϕ2‖L2 for
some constant C1.

2. If a ∈ Mp,∞(R2d), then Aϕ1,ϕ2
a ∈ T p with ‖Aϕ1,ϕ2

a ‖T p ≤ C2‖ϕ1‖L2‖ϕ2‖L2 for
some constant C2.

Finally, we include the density results for localization operators with windows in
M1(R2d) from [3]. The proof consists merely of noting that Lp(R2d) ⊂Mp,∞(R2d),
so the subsets that we claim are dense are larger than those in corollary 7.5.1. In
this sense the following result is weaker than that corollary, and the main point of
interest is the previously proved fact that symbols in the large space Mp,∞(R2d)
actually give operators in T p.
Corollary 8.4.1. Fix two windows ϕ1, ϕ2 ∈M1(Rd).

1. Assume 1 ≤ p < 2. If the set {z ∈ R2d : A(ϕ2, ϕ1)(z) = 0} is empty, then the
set {Aϕ1,ϕ2

f : f ∈Mp,∞(R2d)} is norm dense in T p.

2. Assume 2 ≤ p < ∞. If the set {z ∈ R2d : A(ϕ2, ϕ1)(z) = 0} has Lebesgue
measure zero, then the set {Aϕ1,ϕ2

f : f ∈Mp,∞(R2d)} is norm dense in T p.

69



A Quantum mechanics and informational complete-
ness

In this appendix we will consider the problem that led Kiukas et. al. to proving
theorem 7.2 in [29]. This is the problem of informational completeness in quantum
mechanics, and may informally be stated as follows: an observable assigns to each
state of a system a probability distribution; for which observables can any state be
reconstructed from this probability distribution? We shall see that for a special
class of observables this question is answered by theorem 7.2.

First, however, we need to make notions such as observable and state more
precise.

A.1 Positive operator valued measures

In quantum mechanics, a system is described by a Hilbert space, and we will consider
the system described by L2(Rd). A common way of introducing observables on a
system in quantum mechanics is to define an observable on R2d to be a bounded, self-
adjoined operator on L2(Rd). By the spectral theorem [24, Thm. 7.12] there is a one
to one correspondence between such operators and the so-called projection valued
measures. This suggests a useful generalization of the concept of an observable [10];
we say that a generalized observable is given by a positive operator valued measure,
which we now define for the special case of the Hilbert space L2(Rd).

Definition A.1. Let X be a topological space and let B(X) denote the σ-algebra
of Borel subsets of X. A positive operator valued measure (POVM) on X is a
mapping F : B(X)→ B(L2(Rd)) such that

1. F (M) is a positive operator for any M ∈ B(X),

2. F (X) is the identity operator on L2(Rd),

3. F (∪i∈NMi) =
∑

i∈N F (Mi) for any countable collection of disjoint, measurable
subsets {Mi}i∈N of X, where the sum converges in the weak operator topology.

We also need to make precise what we mean by a state of the system described
by the Hilbert space L2(Rd). In quantum mechanics, the state of a system is
described by a density matrix.

Definition A.2. Let ρ ∈ T 1. We say that ρ is a density matrix if ρ is a positive
operator with tr(ρ) = 1.

Since we claim that a POVM F on X describes a generalized observable, we
should investigate how we may associate to F some kind of abstract measurement

70



procedure. Intuitively we would like to ask the following for a subset M ⊂ X:
if F is a POVM on X and ρ describes a state, what is the probability that a
measurement of the observable F in the state ρ yields a result in M? An answer to
this question can be given by noting that if F is a POVM on X and ρ is a density
matrix, then µFρ defined by

µFρ (M) = tr(ρF (M))

is a probability measure on X2. In this way a POVM F associates a probability
measure µFρ to any density matrix ρ, and it is this map ρ 7→ µFρ that we refer
to as a measurement [10]. Using this we can introduce Prugovečki’s concept of
informational completeness [38].

Definition A.3. A family {Ai}i∈I with Ai ∈ B(L2(Rd)) and I some index set is
said to be informationally complete if, for density matrices ρ and ρ′, we have that

tr(ρAi) = tr(ρ′Ai) ∀i ∈ I =⇒ ρ = ρ′.

Furthermore, we say that an observable F is informationally complete if ρ 7→ µFρ is
injective.

A.2 Covariant observables

We now introduce the class of generalized observables analyzed in [29], namely the
so-called covariant phase space observables.

Definition A.4. A covariant phase space observable is a POVM F on R2d such
that

αz(F (M)) = F (M + z)

for any z ∈ R2d and M ∈ B(R2d), where M + z = {m+ z : m ∈M}.

To relate the covariant observables to the theory of convolutions, we will use
the following concept from [46].

Definition A.5. A map Γ : L∞(R2d) → B(L2(Rd)) is said to be a positive
correspondence rule if

1. Γ(Tzf) = αzΓ(f) for any f ∈ L∞(R2d) and z ∈ R2d,

2. Γ sends positive functions to positive operators,
2This is why the generalization from a projection valued measure to a POVM is reasonable;

since the operators F (M) are positive, µFρ (M) is a positive number and can still be interpreted
as a probability.
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3. Γ is weak*-weak* continuous,

4. Γ(1) = I, where 1 is the constant function 1(z) = 1 and I is the identity
operator on L2(Rd).

Remark. The first property is also called covariance of Γ [46].
The following lemma, originally due to Holevo [26], was mentioned briefly in a

remark in the main text. A proof may be found in [46].

Lemma A.1. If Γ : L∞(R2d)→ B(L2(Rd)) is a positive correspondence rule, then
there exists a positive operator S ∈ T 1 with tr(S) = 1 such that

Γ(f) = f ∗ S

for any f ∈ L∞(R2d).

We now sketch how the covariant phase space observables may be identified with
the positive correspondence rules. First assume that Γ is a positive correspondence
rule. One easily checks that the measure µΓ defined by µΓ(M) = Γ(χM) is a
covariant phase space observable, where χM is the characteristic function of the
Borel subset M ⊂ R2d. Hence any positive correspondence rule determines a
covariant phase space observable.

On the other hand, if F is a covariant phase space observable, then we can
construct a positive correspondence rule Γ by defining integration with respect to
the POVM F . One can show that for any f ∈ L∞(R2d) there is a unique operator
If ∈ B(L2(Rd)) such that 〈Ifψ, ψ〉 =

∫∫
R2d f(z)dνψ for any ψ ∈ L2(Rd), where νψ

is the probability measure defined by νψ(M) = 〈F (M)ψ, ψ〉 [5]. If is called the
integral of f with respect to the POVM F . If we define Γ by Γ(f) = If , then Γ is
a positive correspondence rule.

One can check that if F is a covariant phase space observable and Γ is the
positive correspondence rule obtained above, then F = µΓ [47]. In particular,
any covariant phase space observable can be obtained by starting with a positive
correspondence rule. Using lemma A.1 this leads to the following result.

Lemma A.2. Let F be a covariant phase space observable. There is a positive
operator SF ∈ T 1 with tr(S) = 1 such that F is given by

F (M) = χM ∗ S =

∫∫
R2d

χM(z)αz(S) dz

for any M ∈ B(R2d).

Proof. As we have discussed above, F (M) = Γ(χM) for any M ∈ B(R2d), where Γ
is some positive correspondence rule. By lemma A.1, Γ(χM) = χM ∗ S for some
fixed positive operator S ∈ T 1 with tr(S) = 1.
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A.3 Informational completeness for covariant observables

We will now investigate informational completeness for a covariant phase space
observable F . By lemma A.2, F is given by F (M) = χM ∗S for a positive operator
S with tr(S) = 1. F is informationally complete if ρ 7→ µFρ is injective for density
matrices ρ. By definition, µFρ is given by

µFρ (M) = tr(ρF (M))

= tr(ρχM ∗ S)

=

∫∫
R2d

χM(z)tr(ραz(S)) dz

=

∫∫
R2d

χM(z)ρ ∗ Š(z) dz,

where we have used proposition 2.9 to move the trace inside the integral.
Clearly the probability density function of µFρ with respect to Lebesgue measure

is ρ ∗ Š. From this it follows that F is informationally complete if and only if
the mapping ρ 7→ ρ ∗ Š is injective. If we recall that ρ, S ∈ T 1 we see that this
statement is covered by theorem 7.4 with p =∞ – the injectivity of ρ 7→ ρ ∗ Š is
then part (4) of the theorem (with Š instead of S, but as discussed before this
is not important). In other words F given by F (M) = χM ∗ S is informationally
complete if and only if S is ∞-regular. Finally, by theorem 7.3 this is equivalent
to the statement that the set of zeros of FW (S) has dense complement, or by
proposition 6.6 that the Arveson spectrum of S is all of R2d.

B The generalized phase space representations of
Klauder and Skagerstam

The purpose of this appendix is to show that the convolutions of functions and oper-
ators have also been discovered in the physics literature by Klauder and Skagerstam,
who introduced what they called generalized phase space representations [31,32].
However, they did not recognize that these representations could be phrased as
convolutions and that there is a natural corresponding Fourier transform of oper-
ators. By showing that Klauder and Skagerstam’s results may be phrased using
Werner’s convolutions, we will therefore be able to supply a conceptual framework
for the generalized phase space representations. In this appendix we will write
F for the symplectic Fourier transform, as we need to reserve the subscript σ for
other purposes to agree with the notation in [31,32].

In physics, one often considers localization operators and the Berezin transform
with windows ϕ1 = ϕ2 = φ, where φ(x) = 2d/4e−πx·x [6,33]. In this case the Berezin
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transform Bφ,φS is called the Husimi representation SH of S ∈ T 1, and f ∈ L1(R2d)
is called the Glauber-Sudarshan representation SG−S of the operator S = Aφ,φf [31].
Furthermore, the mapping f 7→ Aφ,φf is the Berezin quantization [33].

By theorem 5.1, Werner’s convolutions provide a generalization of the Husimi
and Glauber-Sudarshan representations by replacing the operator φ ⊗ φ with a
general trace class operator. However, rather than jumping to this conclusion, we
will follow the reasoning of [31] to show another way of arriving at the convolutions
of Werner.

B.1 Generalizing the Husimi and Glauber-Sudarshan repre-
sentations

The goal of Klauder and Skagerstam [31] was to generalize the Husimi and Glauber-
Sudarshan representations by replacing the Gaussian φ(x) = 2d/4e−πx·x with a trace
class operator σ. To find a natural way to do this, they started from the relation

tr(S∗T ) =

∫∫
R2d

FW (S)(z′)FW (T )(z′) dz′ (6)

for S, T ∈ T 1, which follows from evaluating FW (S∗T )(z) = FW (S∗)\FW (T )(z)
at z = 0. They then showed that this could be expressed using the Husimi and
Glauber-Sudarshan representations as

tr(S∗T ) =

∫∫
R2d

F(SG−S)(z′)F(TH)(z′) dz′, (7)

which we will prove easily once the connection to Werner’s convolutions has been
established.

Klauder and Skagerstam then fixed σ ∈ T 1 such that FW (σ) vanishes nowhere,
in order to generalize SG−S to a representation S−σ, and TH to a representation Tσ.
They required that S−σ and Tσ should satisfy the obvious generalization of (7),
and observed that this would hold if S−σ and Tσ were introduced by the following
formal calculation based on equation (6):

tr(S∗T ) =

∫∫
R2d

[
FW (S)(z′)

tr(π(z′)∗σ∗)

]∗
tr(π(z′)σ)FW (T )(z′) dz′

:=

∫∫
R2d

F(S−σ)(z′)F(Tσ)(z′) dz′.

One may then derive explicit expressions for S−σ and Tσ [31]. The generalized
Husimi representation Tσ is given by Tσ(z) = tr(Tαz(σ)), which clearly equals
T ∗ σ̌ from the definition of the convolution of operators. The most relevant
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expression for the generalized Glauber-Sudarshan representation S−σ, is that when
S =

∫∫
R2d f(z)αzσ

∗ dz for some f ∈ L1(R2d), then f = S−σ. In other words, if
S = f ∗ σ∗, then f = S−σ. One may easily check that Tσ = TH and S−σ = SG−S
when σ = φ⊗ φ, where φ(x) = 2d/4e−πx·x. We summarize the results in the next
theorem.

Theorem B.1. Fix σ ∈ T 1 and let S ∈ T 1.

1. Sσ = S ∗ σ̌.

2. If S = f ∗ σ∗ for some f ∈ L1(R2d), then S−σ = f .

Furthermore, if σ = φ⊗ φ where φ(x) = 2d/4e−πx·x for x ∈ Rd, then Sσ = SH and
S−σ = SG−S.

From proposition 4.5 we now get precise conditions for when the generalized
Husimi and Glauber-Sudarshan representations of an operator S belong to various
function spaces, depending on which Schatten p-class S and σ belong to. Also,
theorem B.1 shows that Sσ and S−σ may be defined using Werner’s convolutions
even when FW (σ) has zeros. In fact, we can apply our generalization of Wiener’s
Tauberian theorem in theorems 7.2 and 7.3 to obtain results on the representations
Sσ and S−σ in terms of the zero set of FW (σ).

B.2 Using convolutions to reprove relations between Weyl
and Berezin quantization

Since we have related the generalized Husimi and Glauber-Sudarshan representa-
tions to Werner’s convolutions, we may now use the theory of these convolutions
to shed light on relations between the twisted Weyl symbol and the Husimi and
Glauber-Sudarshan representations. Known relations between these representations
can now be expressed neatly as the associativity of convolutions, or as the relations
FW (f ∗ T ) = F(f)FW (T ) and F(S ∗ T ) = FW (S)FW (T ).

Example B.1. We have already used this approach to prove equation (6), and
claimed that equation (7) follows from theorem B.1. By that theorem, S = S−σ ∗σ∗
if S−σ ∈ L1(R2d) exists. We can use FW (S) = FW (S−σ ∗ σ∗) = F(S−σ)FW (σ∗) to
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write equation (6) as

tr(S∗T ) =

∫∫
R2d

FW (S)(z′)FW (T )(z′) dz′

=

∫∫
R2d

F(S−σ)(z′)FW (σ∗)(z′)FW (T )(z′) dz′

=

∫∫
R2d

F(S−σ)(z′)FW (σ̌)(z′)FW (T )(z′) dz′

=

∫∫
R2d

FS−σ(z′)F(Tσ)(z′) dz′,

where the last equality uses FW (σ̌)FW (T ) = F(T ∗ σ̌) = FTσ by theorem B.1. By
picking σ = φ⊗ φ with φ(x) = 2d/4e−πx·x we recover equation (7).

Example B.2. There is also a relation between Sσ and S−σ [31], which may be
formulated as the associativity of the convolutions. If S−σ ∈ L1(R2d) exists for
σ ∈ T 1, theorem B.1 shows that S = S−σ ∗ σ∗ and Sσ = S ∗ σ̌. Hence

Sσ = (S−σ ∗ σ∗) ∗ σ̌ = S−σ ∗ (σ∗ ∗ σ̌) = S−σ ∗ tr(σ∗αzσ),

where the last equality uses the definition of σ∗ ∗ σ̌. One should also note that
the last convolution is a regular convolution of functions. Again, by picking
σ = φ⊗ φ for φ(x) = 2d/4e−πx·x we obtain a known relation between the Husimi
and Glauber-Sudarshan representations [31].

Example B.3. Finally, FW (f ∗ T ) = F(f)FW (T ) provides a known link between
Weyl and Berezin quantization. Assume that S ∈ T 1 may be represented as
S = S−σ ∗ σ∗, where S−σ ∈ L1(R2d) and σ ∈ T 1. By proposition 6.2, FW (S) is the
twisted Weyl symbol of S, and by proposition 6.4

FW (S) = F(S−σ)FW (σ∗).

If σ = φ⊗φ with φ(x) = 2d/4e−πx·x, one may calculate that FW (σ∗) = e2πix·ωe
π
2

(z·z).
In this case S−σ = SG−S, and we obtain the relation

F(SG−S) = FW (S)e−2πix·ωe−
π
2

(z·z),

which relates the symbol of S in Weyl quantization, FW (S), to the symbol of S in
Berezin quantization, SG−S. Similar formulae for the Husimi representation are
obtained in the same way.
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B.3 Berezin-Lieb inequalities

In [32], Klauder and Skagerstam proved and applied a Berezin-Lieb type inequality
for the extended Husimi and Glauber-Sudarshan representations S−σ and Sσ. Let
σ, σ′ ∈ T 1 be positive operators with tr(σ) = tr(σ′) = 1. For an operator T ∈ T 1

and β ∈ R, Klauder and Skagerstam proved that∫∫
R2d

e−βTσ′ (z) dz ≤ tr(e−βT ) ≤
∫∫

R2d

e−βT−σ(z) dz. (8)

By theorem B.1, one might expect that this result can be formulated using Werner’s
convolutions. In fact, Werner proved this result already in [46] in a more general
form. Werner’s proof uses the following three properties of the convolutions.

Lemma B.2. Let S be a positive trace class operator with tr(S) = 1, and consider
f ∈ L∞(R2d) and T ∈ B(L2(Rd)) with f ≥ 0 and T ≥ 0. Then

1. f ∗ S ≥ 0 and T ∗ S ≥ 0.

2. tr(f ∗ S) =
∫∫

R2d f(z) dz and
∫∫

R2d T ∗ S(z) dz = tr(T ).

3. If 1 denotes the function 1(z) = 1 on R2d and I is the identity operator on
L2(Rd), then 1 ∗ S = I and I ∗ S = 1.

Proof. 1. This was proved in lemma 4.7.

2. Consider first tr(f ∗ S). When f ∈ L1(R2d), we can use that FW (f ∗ S)(z) =
F(f)(z)FW (S)(z). Applying this at z = 0 gives the result. To prove the
result when

∫
R2d f(z) dz =∞, one can approximate f from below by functions

in L1(R2d).

The second part is lemma 4.2 when T ∈ T 1, and when tr(T ) =∞ one can
approximate T by trace class operators to prove the result.

3. The convolution of f ∈ L∞(R2d) with S ∈ T 1 is defined by duality, using the
condition 〈f ∗S, T 〉 = 〈f, T ∗ Š∗〉 for any T ∈ T 1. One easily checks using the
definitions and lemma 4.2 that 〈1, T ∗ Š∗〉 =

∫∫
z∈R2d tr(TαzS∗) dz = tr(T ) =

〈I, T 〉, hence 1 ∗ S = I. That I ∗ S = 1 is proved similarly.

In words, convolution with S fixed preserves trace/integral, positivity and
identity. This is the key to Werner’s proof of the Berezin-Lieb inequality, which
now follows in an elaborated version.
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Proposition B.3. Fix a positive trace class operator S with tr(S) = 1, and let
T = T ∗ ∈ B(L2(Rd)) and f = f ∗ ∈ L∞(R2d). If Φ is a positive, convex and
continuous function on a domain containing the spectrums of T and S ∗ T , then∫∫

R2d

Φ ◦ (S ∗ T )(z) dz ≤ tr(Φ(T )). (9)

Similarly, if Φ is a positive, convex and continuous function on a domain containing
the spectrums of f and f ∗ S, then

tr(Φ(f ∗ S)) ≤
∫∫

R2d

Φ ◦ f(z) dz. (10)

Proof. First we will explain how the proof may be reduced to the case Φ(t) = t+,
i.e. the function that returns the positive part of t. The reader may confirm that
the set of functions Φ where equations (9) and (10) hold is a convex cone and
closed under taking the supremum. It is also closed under reflection Φ 7→ Φ̌ and
translations Φ 7→ TxΦ for x ∈ R – these facts follow from the spectral calculus
and that convolutions with S preserve identity. Since Φ is assumed to be positive,
convex and continuous on a compact set, it can be approximated uniformly by
positive piecewise linear convex functions [37, p. 35]. As is shown in [37, Thm.
1.5.7], any positive piecewise linear convex function can be written as a linear
combination with positive coefficients of translates and reflections of the function
t+ – hence Φ can be approximated by such functions. It is therefore enough to
prove the result for t+.

We will restrict the rest of the proof to inequality (9), inequality (10) follows
from a similar argument. Observe that by the spectral calculus,

tr(T+) = inf{tr(A) : A ≥ 0, A ≥ T},

since 0 ≤ T ≤ A implies tr(T ) ≤ tr(A). Now consider the following calculation:

inf{tr(A) : A ≥ 0, A ≥ T} = inf

{∫∫
R2d

A ∗ S(z) dz : A ≥ 0, A ≥ T

}
≥ inf

{∫∫
R2d

A ∗ S(z) dz : A ∗ S ≥ 0, A ∗ S ≥ T ∗ S
}

≥ inf

{∫∫
R2d

g(z) dz : g ≥ 0, g ≥ T ∗ S
}

=

∫∫
R2d

(T ∗ S)+ dz.

The first equality is simply part (2) of lemma B.2. The two inequalities follow since
we take the infinum of larger sets: in the first case this is true by part (1) of lemma
B.2, and in the second case it is trivially true. The final equality follows by simple
integration theory.
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To obtain Klauber and Skagerstam’s result in equation (8), let Φ(t) = e−βx.
Then let S = σ̌ in (9), and let S = σ∗ and f = T−σ in (10).
Remark. Equation (8) has an interesting interpretation in physics. IfH ∈ B(L2(Rd))
is the Hamiltonian of a quantum mechanical system and β = 1

kBT
, where kB is

Boltzmann’s constant and T is the temperature, then tr(e−βH) is the so-called
partition function of the system. In classical mechanics, on the other hand, the
partition function of an observable f ∈ L∞(R2d) is given by

∫∫
R2d e

−βf(z) dz. Hence
equation (8) bounds the quantum mechanical partition function ofH by the classical
partition functions of Hσ′ and H−σ. If the aim is to determine tr(e−βH), one can
try to optimize the bounds by choosing σ and σ′ cleverly. A detailed discussion
of the physical consequences of equation (8) is far beyond the scope of this thesis,
but the interested reader may consult [32,44].
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